气候变化下草地开花时间路径的历史性重新布线及其对作物改良的影响

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2024-12-26 DOI:10.1111/nph.20375
Brittany Verrico, Jill C. Preston
{"title":"气候变化下草地开花时间路径的历史性重新布线及其对作物改良的影响","authors":"Brittany Verrico,&nbsp;Jill C. Preston","doi":"10.1111/nph.20375","DOIUrl":null,"url":null,"abstract":"<p>Grasses are fundamental to human survival, providing a large percentage of our calories, fuel, and fodder for livestock, and an enormous global carbon sink. A particularly important part of the grass plant is the grain-producing inflorescence that develops in response to both internal and external signals that converge at the shoot tip to influence meristem behavior. Abiotic signals that trigger reproductive development vary across the grass family, mostly due to the unique ecological and phylogenetic histories of each clade. The time it takes a grass to flower has implications for its ability to escape harsh environments, while also indirectly affecting abiotic stress tolerance, inflorescence architecture, and grain yield. Here, we synthesize recent insights into the evolution of grass flowering time in response to past climate change, particularly focusing on genetic convergence in underlying traits. We then discuss how and why the rewiring of a shared ancestral flowering pathway affects grass yields, and outline ways in which researchers are using this and other information to breed higher yielding, climate-proof cereal crops.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"245 5","pages":"1864-1878"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20375","citationCount":"0","resultStr":"{\"title\":\"Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change\",\"authors\":\"Brittany Verrico,&nbsp;Jill C. Preston\",\"doi\":\"10.1111/nph.20375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Grasses are fundamental to human survival, providing a large percentage of our calories, fuel, and fodder for livestock, and an enormous global carbon sink. A particularly important part of the grass plant is the grain-producing inflorescence that develops in response to both internal and external signals that converge at the shoot tip to influence meristem behavior. Abiotic signals that trigger reproductive development vary across the grass family, mostly due to the unique ecological and phylogenetic histories of each clade. The time it takes a grass to flower has implications for its ability to escape harsh environments, while also indirectly affecting abiotic stress tolerance, inflorescence architecture, and grain yield. Here, we synthesize recent insights into the evolution of grass flowering time in response to past climate change, particularly focusing on genetic convergence in underlying traits. We then discuss how and why the rewiring of a shared ancestral flowering pathway affects grass yields, and outline ways in which researchers are using this and other information to breed higher yielding, climate-proof cereal crops.</p>\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"245 5\",\"pages\":\"1864-1878\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20375\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/nph.20375\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.20375","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

草是人类生存的基础,为我们提供了很大比例的卡路里、燃料和牲畜饲料,也是一个巨大的全球碳汇。禾草植物的一个特别重要的部分是产生颗粒的花序,它的发育是对内部和外部信号的响应,这些信号汇聚在茎尖,影响分生组织的行为。触发生殖发育的非生物信号在草科中各不相同,主要是由于每个进化枝的独特生态和系统发育历史。草开花的时间影响着它逃离恶劣环境的能力,同时也间接影响着非生物抗逆性、花序结构和粮食产量。在这里,我们综合了最近对草开花时间的进化响应过去的气候变化的见解,特别关注潜在性状的遗传趋同。然后,我们讨论了共享的祖先开花途径的重新布线如何以及为什么会影响草的产量,并概述了研究人员利用这一信息和其他信息培育高产、耐气候的谷类作物的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change

Grasses are fundamental to human survival, providing a large percentage of our calories, fuel, and fodder for livestock, and an enormous global carbon sink. A particularly important part of the grass plant is the grain-producing inflorescence that develops in response to both internal and external signals that converge at the shoot tip to influence meristem behavior. Abiotic signals that trigger reproductive development vary across the grass family, mostly due to the unique ecological and phylogenetic histories of each clade. The time it takes a grass to flower has implications for its ability to escape harsh environments, while also indirectly affecting abiotic stress tolerance, inflorescence architecture, and grain yield. Here, we synthesize recent insights into the evolution of grass flowering time in response to past climate change, particularly focusing on genetic convergence in underlying traits. We then discuss how and why the rewiring of a shared ancestral flowering pathway affects grass yields, and outline ways in which researchers are using this and other information to breed higher yielding, climate-proof cereal crops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
Issue Information The synaptonemal complex stabilizes meiosis in allotetraploid Brassica napus and autotetraploid Arabidopsis thaliana Building microbial synthetic communities: get inspired by the design of synthetic plant communities CsTCP14-CsIAA4 module-mediated repression of auxin signaling regulates citrus somatic embryogenesis Golgi‐associated retrograde protein (GARP) complex recruits retromer to trans‐Golgi network for FgKex2 and FgSnc1 recycling, necessary for the development and pathogenicity of Fusarium graminearum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1