超越单一细菌菌株的抗菌素耐药性动力学:揭示多重平衡和免疫系统依赖性转变的存在

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2025-02-01 DOI:10.1016/j.chaos.2024.115912
Jhoana P. Romero-Leiton , Alissen Peterson , Pablo Aguirre , Carlos Bastidas-Caldes , Bouchra Nasri
{"title":"超越单一细菌菌株的抗菌素耐药性动力学:揭示多重平衡和免疫系统依赖性转变的存在","authors":"Jhoana P. Romero-Leiton ,&nbsp;Alissen Peterson ,&nbsp;Pablo Aguirre ,&nbsp;Carlos Bastidas-Caldes ,&nbsp;Bouchra Nasri","doi":"10.1016/j.chaos.2024.115912","DOIUrl":null,"url":null,"abstract":"<div><div>The surge in antimicrobial resistance (AMR) is a critical global public health concern that complicates the eradication of harmful microorganisms within the host. Therefore, mathematical models have enhanced our understanding of AMR dynamics and aided in identifying measures to combat bacterial diseases, primarily focusing on single bacterial strains rather than microbial consortia. However, microbial consortia have not been extensively investigated. This study is a significant effort to examine the transmission of resistance in microbial communities, with a special focus on the ecological dynamics of microbial competition and the role of the host immune system in eradicating infections. We propose a mathematical model of AMR propagation that considers competition between two bacterial strains of the same species. Our analysis focuses on stability studies and the existence of bifurcations using different parameter values to represent the rate at which the host immune system eliminates bacteria. Our findings revealed that AMR propagation is primarily influenced by bacterial replication rate and host immune system efficacy. We observed that bacteria with lower replication rates could be effectively controlled, leading to disease extinction, whereas those with higher replication rates required a significantly robust immune response for clearance. The model demonstrated the existence of nine biologically feasible equilibrium points, with four explicitly associated with the different types of host immune systems characterized in the literature. Therefore, our study highlights the interplay between bacterial competition, immune system effectiveness, and AMR spread. We emphasize the importance of maintaining a robust immune system and establishing sensible antibiotic usage guidelines to slow the development and spread of antibiotic resistance.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"191 ","pages":"Article 115912"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of AMR beyond a single bacterial strain: Revealing the existence of multiple equilibria and immune system-dependent transitions\",\"authors\":\"Jhoana P. Romero-Leiton ,&nbsp;Alissen Peterson ,&nbsp;Pablo Aguirre ,&nbsp;Carlos Bastidas-Caldes ,&nbsp;Bouchra Nasri\",\"doi\":\"10.1016/j.chaos.2024.115912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The surge in antimicrobial resistance (AMR) is a critical global public health concern that complicates the eradication of harmful microorganisms within the host. Therefore, mathematical models have enhanced our understanding of AMR dynamics and aided in identifying measures to combat bacterial diseases, primarily focusing on single bacterial strains rather than microbial consortia. However, microbial consortia have not been extensively investigated. This study is a significant effort to examine the transmission of resistance in microbial communities, with a special focus on the ecological dynamics of microbial competition and the role of the host immune system in eradicating infections. We propose a mathematical model of AMR propagation that considers competition between two bacterial strains of the same species. Our analysis focuses on stability studies and the existence of bifurcations using different parameter values to represent the rate at which the host immune system eliminates bacteria. Our findings revealed that AMR propagation is primarily influenced by bacterial replication rate and host immune system efficacy. We observed that bacteria with lower replication rates could be effectively controlled, leading to disease extinction, whereas those with higher replication rates required a significantly robust immune response for clearance. The model demonstrated the existence of nine biologically feasible equilibrium points, with four explicitly associated with the different types of host immune systems characterized in the literature. Therefore, our study highlights the interplay between bacterial competition, immune system effectiveness, and AMR spread. We emphasize the importance of maintaining a robust immune system and establishing sensible antibiotic usage guidelines to slow the development and spread of antibiotic resistance.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"191 \",\"pages\":\"Article 115912\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924014644\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924014644","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

抗菌素耐药性(AMR)的激增是一个严重的全球公共卫生问题,使消灭宿主体内有害微生物复杂化。因此,数学模型增强了我们对抗菌素耐药性动态的理解,并有助于确定对抗细菌性疾病的措施,主要关注单一菌株而不是微生物群落。然而,微生物联合体尚未得到广泛的研究。本研究是一项重要的研究,旨在研究微生物群落中耐药性的传播,特别关注微生物竞争的生态动态和宿主免疫系统在根除感染中的作用。我们提出了一种考虑同一物种的两种细菌菌株之间竞争的AMR繁殖的数学模型。我们的分析集中在稳定性研究和分叉的存在,使用不同的参数值来表示宿主免疫系统消除细菌的速度。我们的研究结果表明,AMR的传播主要受细菌复制率和宿主免疫系统功效的影响。我们观察到,复制率较低的细菌可以有效地控制,导致疾病灭绝,而复制率较高的细菌需要明显强大的免疫应答才能清除。该模型证明存在9个生物学上可行的平衡点,其中4个与文献中描述的不同类型的宿主免疫系统明确相关。因此,我们的研究强调了细菌竞争、免疫系统有效性和AMR传播之间的相互作用。我们强调保持强健的免疫系统和建立合理的抗生素使用指南的重要性,以减缓抗生素耐药性的发展和传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of AMR beyond a single bacterial strain: Revealing the existence of multiple equilibria and immune system-dependent transitions
The surge in antimicrobial resistance (AMR) is a critical global public health concern that complicates the eradication of harmful microorganisms within the host. Therefore, mathematical models have enhanced our understanding of AMR dynamics and aided in identifying measures to combat bacterial diseases, primarily focusing on single bacterial strains rather than microbial consortia. However, microbial consortia have not been extensively investigated. This study is a significant effort to examine the transmission of resistance in microbial communities, with a special focus on the ecological dynamics of microbial competition and the role of the host immune system in eradicating infections. We propose a mathematical model of AMR propagation that considers competition between two bacterial strains of the same species. Our analysis focuses on stability studies and the existence of bifurcations using different parameter values to represent the rate at which the host immune system eliminates bacteria. Our findings revealed that AMR propagation is primarily influenced by bacterial replication rate and host immune system efficacy. We observed that bacteria with lower replication rates could be effectively controlled, leading to disease extinction, whereas those with higher replication rates required a significantly robust immune response for clearance. The model demonstrated the existence of nine biologically feasible equilibrium points, with four explicitly associated with the different types of host immune systems characterized in the literature. Therefore, our study highlights the interplay between bacterial competition, immune system effectiveness, and AMR spread. We emphasize the importance of maintaining a robust immune system and establishing sensible antibiotic usage guidelines to slow the development and spread of antibiotic resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Editorial Board Elastic interaction of second-order rogue matter waves for the modified Gross–Pitaevskii equation with time-dependent trapping potential and gain/loss Dynamically controllable two-color electromagnetically induced grating via spatially modulated inelastic two-wave mixing Optimizing Physics-Informed Neural Networks with hybrid activation functions: A comparative study on improving residual loss and accuracy using partial differential equations Dynamical analysis, multi-cavity control and DSP implementation of a novel memristive autapse neuron model emulating brain behaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1