利用肿瘤细胞和诱导多能干细胞共享的表面抗原的强效预防性癌症疫苗

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Nature Biomedical Engineering Pub Date : 2024-12-27 DOI:10.1038/s41551-024-01309-0
Nan Li, Hao Qin, Fei Zhu, Hao Ding, Yang Chen, Yixuan Lin, Ronghui Deng, Tianyu Ma, Yuanyuan Lv, Changhao Xiong, Rong Li, Yaohua Wei, Jian Shi, Hanqing Chen, Yuliang Zhao, Guangbiao Zhou, Hua Guo, Mengyao Lv, Yongfang Lin, Bing Han, Guangjun Nie, Ruifang Zhao
{"title":"利用肿瘤细胞和诱导多能干细胞共享的表面抗原的强效预防性癌症疫苗","authors":"Nan Li, Hao Qin, Fei Zhu, Hao Ding, Yang Chen, Yixuan Lin, Ronghui Deng, Tianyu Ma, Yuanyuan Lv, Changhao Xiong, Rong Li, Yaohua Wei, Jian Shi, Hanqing Chen, Yuliang Zhao, Guangbiao Zhou, Hua Guo, Mengyao Lv, Yongfang Lin, Bing Han, Guangjun Nie, Ruifang Zhao","doi":"10.1038/s41551-024-01309-0","DOIUrl":null,"url":null,"abstract":"<p>The development of prophylactic cancer vaccines typically involves the selection of combinations of tumour-associated antigens, tumour-specific antigens and neoantigens. Here we show that membranes from induced pluripotent stem cells can serve as a tumour-antigen pool, and that a nanoparticle vaccine consisting of self-assembled commercial adjuvants wrapped by such membranes robustly stimulated innate immunity, evaded antigen-specific tolerance and activated B-cell and T-cell responses, which were mediated by epitopes from the abundant number of antigens shared between the membranes of tumour cells and pluripotent stem cells. In mice, the vaccine elicited systemic antitumour memory T-cell and B-cell responses as well as tumour-specific immune responses after a tumour challenge, and inhibited the progression of melanoma, colon cancer, breast cancer and post-operative lung metastases. Harnessing antigens shared by pluripotent stem cell membranes and tumour membranes may facilitate the development of universal cancer vaccines.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"306 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potent prophylactic cancer vaccines harnessing surface antigens shared by tumour cells and induced pluripotent stem cells\",\"authors\":\"Nan Li, Hao Qin, Fei Zhu, Hao Ding, Yang Chen, Yixuan Lin, Ronghui Deng, Tianyu Ma, Yuanyuan Lv, Changhao Xiong, Rong Li, Yaohua Wei, Jian Shi, Hanqing Chen, Yuliang Zhao, Guangbiao Zhou, Hua Guo, Mengyao Lv, Yongfang Lin, Bing Han, Guangjun Nie, Ruifang Zhao\",\"doi\":\"10.1038/s41551-024-01309-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of prophylactic cancer vaccines typically involves the selection of combinations of tumour-associated antigens, tumour-specific antigens and neoantigens. Here we show that membranes from induced pluripotent stem cells can serve as a tumour-antigen pool, and that a nanoparticle vaccine consisting of self-assembled commercial adjuvants wrapped by such membranes robustly stimulated innate immunity, evaded antigen-specific tolerance and activated B-cell and T-cell responses, which were mediated by epitopes from the abundant number of antigens shared between the membranes of tumour cells and pluripotent stem cells. In mice, the vaccine elicited systemic antitumour memory T-cell and B-cell responses as well as tumour-specific immune responses after a tumour challenge, and inhibited the progression of melanoma, colon cancer, breast cancer and post-operative lung metastases. Harnessing antigens shared by pluripotent stem cell membranes and tumour membranes may facilitate the development of universal cancer vaccines.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"306 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-024-01309-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01309-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

预防性癌症疫苗的开发通常涉及选择肿瘤相关抗原、肿瘤特异性抗原和新抗原的组合。本研究表明,来自诱导多能干细胞的膜可以作为肿瘤抗原池,由自组装的商业佐剂组成的纳米颗粒疫苗被这种膜包裹,有力地刺激了先天免疫,逃避了抗原特异性耐受性,激活了b细胞和t细胞反应,这些反应是由肿瘤细胞和多能干细胞膜之间共享的大量抗原的表位介导的。在小鼠中,该疫苗在肿瘤攻击后引发了全身抗肿瘤记忆t细胞和b细胞反应以及肿瘤特异性免疫反应,并抑制了黑色素瘤、结肠癌、乳腺癌和术后肺转移的进展。利用多能干细胞膜和肿瘤膜共享的抗原可能促进通用癌症疫苗的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potent prophylactic cancer vaccines harnessing surface antigens shared by tumour cells and induced pluripotent stem cells

The development of prophylactic cancer vaccines typically involves the selection of combinations of tumour-associated antigens, tumour-specific antigens and neoantigens. Here we show that membranes from induced pluripotent stem cells can serve as a tumour-antigen pool, and that a nanoparticle vaccine consisting of self-assembled commercial adjuvants wrapped by such membranes robustly stimulated innate immunity, evaded antigen-specific tolerance and activated B-cell and T-cell responses, which were mediated by epitopes from the abundant number of antigens shared between the membranes of tumour cells and pluripotent stem cells. In mice, the vaccine elicited systemic antitumour memory T-cell and B-cell responses as well as tumour-specific immune responses after a tumour challenge, and inhibited the progression of melanoma, colon cancer, breast cancer and post-operative lung metastases. Harnessing antigens shared by pluripotent stem cell membranes and tumour membranes may facilitate the development of universal cancer vaccines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
期刊最新文献
A generalist model for enhancing brain MRIs Author Correction: Patterned gastrointestinal monolayers with bilateral access as observable models of parasite gut infection Author Correction: Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA Author Correction: Dynamical flexible inference of nonlinear latent factors and structures in neural population activity Therapeutic precision, potency and promise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1