基于物联网优化深度学习的电动汽车优化调度

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Combinatorial Optimization Pub Date : 2024-12-26 DOI:10.1007/s10878-024-01251-6
V. Agalya, M. Muthuvinayagam, R. Gandhi
{"title":"基于物联网优化深度学习的电动汽车优化调度","authors":"V. Agalya, M. Muthuvinayagam, R. Gandhi","doi":"10.1007/s10878-024-01251-6","DOIUrl":null,"url":null,"abstract":"<p>Recent years have witnessed a growing trend in the utilization of Electric Vehicles (EVs), however with the increased usage of EVs, appropriate strategies for supporting the charging demands has not garnered much attention. The absence of adaptable plans in charging may result in minimized participation; further, the charging demands have to be addressed with utmost care for ensuring reliability and efficiency of the grid. In this paper, an efficient EV charging technique based on blockchain based user transaction and smart contract is devised. Here, charge scheduling is performed by acquiring the information the charging demand of the EV over Internet of things. In case the EV does not have sufficient power to reach the target, nearest Charging Station (CS) with the minimal electricity price is identified. The CS is selected considering various factors, such average waiting time, distance, power, traffic, and so on. Here, power prediction is performed using the Deep Maxout Network (DMN), whose weights are adapted based on the devised Exponentially Snake Optimization (ESO) algorithm. Furthermore, the efficacy of the devised ESO-DMN is examined considering metrics, like average waiting time, distance, and number of EVs charged and power and is found to have attained values of 1.937 s, 13.952 km, 55 and 2.876 J.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"15 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal dispatching of electric vehicles based on optimized deep learning in IoT\",\"authors\":\"V. Agalya, M. Muthuvinayagam, R. Gandhi\",\"doi\":\"10.1007/s10878-024-01251-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent years have witnessed a growing trend in the utilization of Electric Vehicles (EVs), however with the increased usage of EVs, appropriate strategies for supporting the charging demands has not garnered much attention. The absence of adaptable plans in charging may result in minimized participation; further, the charging demands have to be addressed with utmost care for ensuring reliability and efficiency of the grid. In this paper, an efficient EV charging technique based on blockchain based user transaction and smart contract is devised. Here, charge scheduling is performed by acquiring the information the charging demand of the EV over Internet of things. In case the EV does not have sufficient power to reach the target, nearest Charging Station (CS) with the minimal electricity price is identified. The CS is selected considering various factors, such average waiting time, distance, power, traffic, and so on. Here, power prediction is performed using the Deep Maxout Network (DMN), whose weights are adapted based on the devised Exponentially Snake Optimization (ESO) algorithm. Furthermore, the efficacy of the devised ESO-DMN is examined considering metrics, like average waiting time, distance, and number of EVs charged and power and is found to have attained values of 1.937 s, 13.952 km, 55 and 2.876 J.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01251-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01251-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,电动汽车的使用呈增长趋势,但随着电动汽车使用量的增加,适当的充电支持策略却没有引起人们的重视。在收费过程中缺乏适应性强的计划可能导致参与最小化;此外,必须非常谨慎地解决充电需求,以确保电网的可靠性和效率。本文设计了一种基于区块链的用户交易和智能合约的高效电动汽车充电技术。其中,充电调度是通过物联网获取电动汽车的充电需求信息来实现的。如果电动汽车没有足够的电力到达目标,则会确定最近的充电站(CS),其电价最低。CS的选择考虑了各种因素,如平均等待时间、距离、功率、交通等。在这里,功率预测使用深度Maxout网络(DMN)进行,其权重根据设计的指数蛇优化(ESO)算法进行调整。此外,考虑到平均等待时间、距离、充电电动汽车数量和功率等指标,对设计的ESO-DMN的有效性进行了检验,发现其值分别为1.937 s、13.952 km、55和2.876 J。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal dispatching of electric vehicles based on optimized deep learning in IoT

Recent years have witnessed a growing trend in the utilization of Electric Vehicles (EVs), however with the increased usage of EVs, appropriate strategies for supporting the charging demands has not garnered much attention. The absence of adaptable plans in charging may result in minimized participation; further, the charging demands have to be addressed with utmost care for ensuring reliability and efficiency of the grid. In this paper, an efficient EV charging technique based on blockchain based user transaction and smart contract is devised. Here, charge scheduling is performed by acquiring the information the charging demand of the EV over Internet of things. In case the EV does not have sufficient power to reach the target, nearest Charging Station (CS) with the minimal electricity price is identified. The CS is selected considering various factors, such average waiting time, distance, power, traffic, and so on. Here, power prediction is performed using the Deep Maxout Network (DMN), whose weights are adapted based on the devised Exponentially Snake Optimization (ESO) algorithm. Furthermore, the efficacy of the devised ESO-DMN is examined considering metrics, like average waiting time, distance, and number of EVs charged and power and is found to have attained values of 1.937 s, 13.952 km, 55 and 2.876 J.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
期刊最新文献
Social media actors: perception and optimization of influence across different types $$(K_{1}\vee {P_{t})}$$ -saturated graphs with minimum number of edges Advertising meets assortment planning: joint advertising and assortment optimization under multinomial logit model Recognizing integrality of weighted rectangles partitions An improved PTAS for covering targets with mobile sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1