{"title":"从颗粒动力学到威布尔统计的反向侵蚀管道起裂的多尺度随机模型。第二部分:模型验证和应用","authors":"Zhijie Wang, Caglar Oskay, Alessandro Fascetti","doi":"10.1002/nag.3930","DOIUrl":null,"url":null,"abstract":"<p>Backward erosion piping (BEP) is a leading internal erosion mechanism for flood protection system failures. A model capable of predicting critical hydraulic conditions for BEP initiation at multiple scales while also incorporating soil variability is a pressing need. This study formulates and validates a novel multiscale probabilistic BEP initiation framework with incorporation of soil variability. The framework is based on a grain-scale probabilistic model and the weakest link theory, and the theory of rate processes. The multiscale framework proposed herein is validated through a wide range of available experimental data from independent sources, encompassing tests performed at multiple scales. Following calibration with small-scale experimental data, the model demonstrates accurate prediction of critical hydraulic gradients at larger scales (3–6 orders of magnitude difference), including the ability to capture the grain size dependence of BEP initiation and providing uncertainty estimates. A systematic analysis is performed to uncover the effects of different soil properties on multiscale critical hydraulic conditions.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"49 4","pages":"1247-1261"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nag.3930","citationCount":"0","resultStr":"{\"title\":\"Multiscale Stochastic Modeling of Backward Erosion Piping Initiation, From Grain Kinetics to Weibull Statistics. Part II: Model Validation and Applications\",\"authors\":\"Zhijie Wang, Caglar Oskay, Alessandro Fascetti\",\"doi\":\"10.1002/nag.3930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Backward erosion piping (BEP) is a leading internal erosion mechanism for flood protection system failures. A model capable of predicting critical hydraulic conditions for BEP initiation at multiple scales while also incorporating soil variability is a pressing need. This study formulates and validates a novel multiscale probabilistic BEP initiation framework with incorporation of soil variability. The framework is based on a grain-scale probabilistic model and the weakest link theory, and the theory of rate processes. The multiscale framework proposed herein is validated through a wide range of available experimental data from independent sources, encompassing tests performed at multiple scales. Following calibration with small-scale experimental data, the model demonstrates accurate prediction of critical hydraulic gradients at larger scales (3–6 orders of magnitude difference), including the ability to capture the grain size dependence of BEP initiation and providing uncertainty estimates. A systematic analysis is performed to uncover the effects of different soil properties on multiscale critical hydraulic conditions.</p>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"49 4\",\"pages\":\"1247-1261\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nag.3930\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3930\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3930","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Multiscale Stochastic Modeling of Backward Erosion Piping Initiation, From Grain Kinetics to Weibull Statistics. Part II: Model Validation and Applications
Backward erosion piping (BEP) is a leading internal erosion mechanism for flood protection system failures. A model capable of predicting critical hydraulic conditions for BEP initiation at multiple scales while also incorporating soil variability is a pressing need. This study formulates and validates a novel multiscale probabilistic BEP initiation framework with incorporation of soil variability. The framework is based on a grain-scale probabilistic model and the weakest link theory, and the theory of rate processes. The multiscale framework proposed herein is validated through a wide range of available experimental data from independent sources, encompassing tests performed at multiple scales. Following calibration with small-scale experimental data, the model demonstrates accurate prediction of critical hydraulic gradients at larger scales (3–6 orders of magnitude difference), including the ability to capture the grain size dependence of BEP initiation and providing uncertainty estimates. A systematic analysis is performed to uncover the effects of different soil properties on multiscale critical hydraulic conditions.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.