{"title":"气候因子和植被覆盖对亚洲沙尘事件时间变化的贡献","authors":"Wencun Zhou, Huanjiong Wang, Quansheng Ge","doi":"10.1038/s41612-024-00887-9","DOIUrl":null,"url":null,"abstract":"Asia is one of the largest dust source regions in the world. However, the temporal variations and drivers of different types of dust events in this region remain unclear. Based on surface observation data, we explored spatiotemporal changes in three types of dust events and their driving factors in Asia by using machine learning methods. Results indicated that the frequency of moderate dust events (MDE) and severe dust events (SDE) decreased significantly from 2000 to 2022, which could be primarily attributed to a decrease in strong wind days (contribution >50%), and to a lesser extent to increases in soil moisture, precipitation, and leaf area index (LAI). When the daily maximum wind speed exceeds 13.0 m/s, the probability of MDE tends to decrease, while the probability of SDE tends to increase. These findings enhance our understanding of the variation in frequency and intensity of dust events in response to climate change.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-10"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00887-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Contributions of climatic factors and vegetation cover to the temporal shift in Asian dust events\",\"authors\":\"Wencun Zhou, Huanjiong Wang, Quansheng Ge\",\"doi\":\"10.1038/s41612-024-00887-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asia is one of the largest dust source regions in the world. However, the temporal variations and drivers of different types of dust events in this region remain unclear. Based on surface observation data, we explored spatiotemporal changes in three types of dust events and their driving factors in Asia by using machine learning methods. Results indicated that the frequency of moderate dust events (MDE) and severe dust events (SDE) decreased significantly from 2000 to 2022, which could be primarily attributed to a decrease in strong wind days (contribution >50%), and to a lesser extent to increases in soil moisture, precipitation, and leaf area index (LAI). When the daily maximum wind speed exceeds 13.0 m/s, the probability of MDE tends to decrease, while the probability of SDE tends to increase. These findings enhance our understanding of the variation in frequency and intensity of dust events in response to climate change.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00887-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00887-9\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00887-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Contributions of climatic factors and vegetation cover to the temporal shift in Asian dust events
Asia is one of the largest dust source regions in the world. However, the temporal variations and drivers of different types of dust events in this region remain unclear. Based on surface observation data, we explored spatiotemporal changes in three types of dust events and their driving factors in Asia by using machine learning methods. Results indicated that the frequency of moderate dust events (MDE) and severe dust events (SDE) decreased significantly from 2000 to 2022, which could be primarily attributed to a decrease in strong wind days (contribution >50%), and to a lesser extent to increases in soil moisture, precipitation, and leaf area index (LAI). When the daily maximum wind speed exceeds 13.0 m/s, the probability of MDE tends to decrease, while the probability of SDE tends to increase. These findings enhance our understanding of the variation in frequency and intensity of dust events in response to climate change.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.