多阳离子酞菁钌作为多耐药微生物光动力失活的光敏剂

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL European Journal of Medicinal Chemistry Pub Date : 2024-12-27 DOI:10.1016/j.ejmech.2024.117214
Ana Belén Domínguez, Daniel Ziental, Jolanta Długaszewska, Lukasz Sobotta, Tomás Torres, M. Salomé Rodríguez-Morgade
{"title":"多阳离子酞菁钌作为多耐药微生物光动力失活的光敏剂","authors":"Ana Belén Domínguez, Daniel Ziental, Jolanta Długaszewska, Lukasz Sobotta, Tomás Torres, M. Salomé Rodríguez-Morgade","doi":"10.1016/j.ejmech.2024.117214","DOIUrl":null,"url":null,"abstract":"Four photosensitizers <strong>PS1a-PS4a</strong> consisting in multicationic Ruthenium(II) Phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, <strong>PS3a</strong> and <strong>PS4a</strong> were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches. Under low light regimes, the two hydrophilic <strong>PS1a</strong> and <strong>PS2a</strong>, as well as the amphiphilic <strong>PS3a</strong> show much stronger response against gram-positive <em>MRSA</em> than that observed for the typical phthalocyanines designed for PDI, namely zinc(II) and palladium(II) complexes, as well as free-base Pcs. Besides, <strong>PS1a</strong>, <strong>PS2a</strong> and <strong>PS3a</strong> show remarkably high activity against the gram-negative <em>E. coli</em>, although weak fungicidal character against fluconazole-resistant <em>C. albicans</em>. Contrasting, the structurally different, amphiphilic <strong>PS4a</strong> shows only slight activity for Gram-positive bacteria, despite its ability to cross cell membrane and reach internal organelles. Still, <strong>PS4a</strong> shows a positive synergistic effect against <em>MRSA</em> when combined with doxycycline, exhibiting an increased activity from about 1.5 to about 4.9 log reduction under the light dose of 30 J/cm<sup>2</sup> and the 0.125 mg/L subinhibitory dose of doxycycline.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"64 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicationic Ruthenium Phthalocyanines as Photosensitizers for Photodynamic Inactivation of Multiresistant Microbes\",\"authors\":\"Ana Belén Domínguez, Daniel Ziental, Jolanta Długaszewska, Lukasz Sobotta, Tomás Torres, M. Salomé Rodríguez-Morgade\",\"doi\":\"10.1016/j.ejmech.2024.117214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Four photosensitizers <strong>PS1a-PS4a</strong> consisting in multicationic Ruthenium(II) Phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, <strong>PS3a</strong> and <strong>PS4a</strong> were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches. Under low light regimes, the two hydrophilic <strong>PS1a</strong> and <strong>PS2a</strong>, as well as the amphiphilic <strong>PS3a</strong> show much stronger response against gram-positive <em>MRSA</em> than that observed for the typical phthalocyanines designed for PDI, namely zinc(II) and palladium(II) complexes, as well as free-base Pcs. Besides, <strong>PS1a</strong>, <strong>PS2a</strong> and <strong>PS3a</strong> show remarkably high activity against the gram-negative <em>E. coli</em>, although weak fungicidal character against fluconazole-resistant <em>C. albicans</em>. Contrasting, the structurally different, amphiphilic <strong>PS4a</strong> shows only slight activity for Gram-positive bacteria, despite its ability to cross cell membrane and reach internal organelles. Still, <strong>PS4a</strong> shows a positive synergistic effect against <em>MRSA</em> when combined with doxycycline, exhibiting an increased activity from about 1.5 to about 4.9 log reduction under the light dose of 30 J/cm<sup>2</sup> and the 0.125 mg/L subinhibitory dose of doxycycline.\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejmech.2024.117214\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117214","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了多阳离子酞菁钌(Ruthenium(II) Phthalocyanines, RuPcs)组成的4种光敏剂PS1a-PS4a在多重耐药微生物的光动力失活(PDI)中的作用。含有4 - 12个末端铵盐的RuPcs被设计用于微生物细胞质细胞膜,并显示出高的单线态氧量子产率。此外,通过两种不同的结构方法,PS3a和PS4a被认为具有两亲性特征,从而表现出多靶点定位。在弱光条件下,两种亲水的PS1a和PS2a以及两亲性的PS3a对革兰氏阳性MRSA的反应要比为PDI设计的典型酞菁,即锌(II)和钯(II)配合物以及游离基Pcs强得多。此外,PS1a、PS2a和PS3a对革兰氏阴性大肠杆菌表现出显著的活性,但对耐氟康唑白色念珠菌的杀真菌活性较弱。相比之下,结构不同的两亲性PS4a对革兰氏阳性细菌只有轻微的活性,尽管它能够穿过细胞膜到达内部细胞器。然而,PS4a与强力霉素联用时对MRSA表现出积极的协同作用,在30 J/cm2的轻剂量和0.125 mg/L的强力霉素亚抑制剂量下,PS4a的活性从1.5 log增加到4.9 log。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multicationic Ruthenium Phthalocyanines as Photosensitizers for Photodynamic Inactivation of Multiresistant Microbes
Four photosensitizers PS1a-PS4a consisting in multicationic Ruthenium(II) Phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches. Under low light regimes, the two hydrophilic PS1a and PS2a, as well as the amphiphilic PS3a show much stronger response against gram-positive MRSA than that observed for the typical phthalocyanines designed for PDI, namely zinc(II) and palladium(II) complexes, as well as free-base Pcs. Besides, PS1a, PS2a and PS3a show remarkably high activity against the gram-negative E. coli, although weak fungicidal character against fluconazole-resistant C. albicans. Contrasting, the structurally different, amphiphilic PS4a shows only slight activity for Gram-positive bacteria, despite its ability to cross cell membrane and reach internal organelles. Still, PS4a shows a positive synergistic effect against MRSA when combined with doxycycline, exhibiting an increased activity from about 1.5 to about 4.9 log reduction under the light dose of 30 J/cm2 and the 0.125 mg/L subinhibitory dose of doxycycline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
期刊最新文献
Recent Advances in The Therapeutic Insights of Thiazole Scaffolds as Acetylcholinesterase Inhibitors Cytotoxic pyrrole-based gold(III) chelates target human topoisomerase II as dual-mode inhibitors and interact with human serum albumin Corrigendum to “Applying molecular hybridization to design a new class of pyrazolo[3,4-d] pyrimidines as Src inhibitors active in hepatocellular carcinoma” [Eur. J. Med. Chem. 280 (2024) 116929] Design, Synthesis and Evaluation of Diarylidenyl Piperidone-Ligated Platinum (IV) Complexes as Chemoimmunotherapeutic Agents Optimization of pyrazole/1,2,4-triazole as dual EGFR/COX-2 inhibitors: Design, synthesis, anticancer potential, apoptosis induction and cell cycle analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1