Moon-Gyo Lee , Chang-Guk Sun , Han-Saem Kim , Yun-Wook Choo , Hyung-Ik Cho
{"title":"场地和地形对单面边坡地震反应影响的试验研究","authors":"Moon-Gyo Lee , Chang-Guk Sun , Han-Saem Kim , Yun-Wook Choo , Hyung-Ik Cho","doi":"10.1016/j.enggeo.2024.107868","DOIUrl":null,"url":null,"abstract":"<div><div>Topographic effects can alter seismic ground motion characteristics, resulting in complex seismic responses on slopes, ridges, and other irregular terrains. While the significance of topographic amplification has been observed in historical earthquakes and extensively studied, quantifying and parameterizing the variations in seismic motion caused by these effects remains challenging. This study investigates the seismic responses of single-sided slopes under topographic and site influences using geotechnical centrifuge modeling. Various input motions, including actual earthquake records, were applied to identical slope models with different subsoil thicknesses. The results revealed that topographic amplification at the slope crest was frequency-dependent, contrary to the conventional assumption of uniform topographic amplification factors. Significant resonances were identified at specific frequencies associated with topographic and site features, leading to notable crest amplification. Amplification was further enhanced when the resonant frequencies of topographic and site features converged. Through comprehensive analysis in the time, frequency, and time–frequency domains, we evaluated the resonant frequency bands induced by topographic and site features and their amplifications. Additionally, the study confirmed that the seismic responses of the slope models to actual earthquake motions closely resembled those of sinusoidal waves with similar frequency characteristics, supporting the reliability and field applicability of the findings. These insights improve our understanding of topographic and site effects on seismic ground motion and highlight the need to accurately incorporate these effects into design spectra for regions with complex terrain.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"345 ","pages":"Article 107868"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on site and topographic effects on seismic responses in single-sided slopes\",\"authors\":\"Moon-Gyo Lee , Chang-Guk Sun , Han-Saem Kim , Yun-Wook Choo , Hyung-Ik Cho\",\"doi\":\"10.1016/j.enggeo.2024.107868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Topographic effects can alter seismic ground motion characteristics, resulting in complex seismic responses on slopes, ridges, and other irregular terrains. While the significance of topographic amplification has been observed in historical earthquakes and extensively studied, quantifying and parameterizing the variations in seismic motion caused by these effects remains challenging. This study investigates the seismic responses of single-sided slopes under topographic and site influences using geotechnical centrifuge modeling. Various input motions, including actual earthquake records, were applied to identical slope models with different subsoil thicknesses. The results revealed that topographic amplification at the slope crest was frequency-dependent, contrary to the conventional assumption of uniform topographic amplification factors. Significant resonances were identified at specific frequencies associated with topographic and site features, leading to notable crest amplification. Amplification was further enhanced when the resonant frequencies of topographic and site features converged. Through comprehensive analysis in the time, frequency, and time–frequency domains, we evaluated the resonant frequency bands induced by topographic and site features and their amplifications. Additionally, the study confirmed that the seismic responses of the slope models to actual earthquake motions closely resembled those of sinusoidal waves with similar frequency characteristics, supporting the reliability and field applicability of the findings. These insights improve our understanding of topographic and site effects on seismic ground motion and highlight the need to accurately incorporate these effects into design spectra for regions with complex terrain.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"345 \",\"pages\":\"Article 107868\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001379522400468X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001379522400468X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Experimental study on site and topographic effects on seismic responses in single-sided slopes
Topographic effects can alter seismic ground motion characteristics, resulting in complex seismic responses on slopes, ridges, and other irregular terrains. While the significance of topographic amplification has been observed in historical earthquakes and extensively studied, quantifying and parameterizing the variations in seismic motion caused by these effects remains challenging. This study investigates the seismic responses of single-sided slopes under topographic and site influences using geotechnical centrifuge modeling. Various input motions, including actual earthquake records, were applied to identical slope models with different subsoil thicknesses. The results revealed that topographic amplification at the slope crest was frequency-dependent, contrary to the conventional assumption of uniform topographic amplification factors. Significant resonances were identified at specific frequencies associated with topographic and site features, leading to notable crest amplification. Amplification was further enhanced when the resonant frequencies of topographic and site features converged. Through comprehensive analysis in the time, frequency, and time–frequency domains, we evaluated the resonant frequency bands induced by topographic and site features and their amplifications. Additionally, the study confirmed that the seismic responses of the slope models to actual earthquake motions closely resembled those of sinusoidal waves with similar frequency characteristics, supporting the reliability and field applicability of the findings. These insights improve our understanding of topographic and site effects on seismic ground motion and highlight the need to accurately incorporate these effects into design spectra for regions with complex terrain.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.