YBa1−xSrxCuFeO5层状钙钛矿:探索超越顺磁-共线-螺旋三重点的磁序的尝试

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2024-12-26 DOI:10.1103/physrevb.110.235156
V. Porée, D. J. Gawryluk, T. Shang, J. A. Rodríguez-Velamazań, N. Casati, D. Sheptyakov, X. Torrelles, M. Medarde
{"title":"YBa1−xSrxCuFeO5层状钙钛矿:探索超越顺磁-共线-螺旋三重点的磁序的尝试","authors":"V. Porée, D. J. Gawryluk, T. Shang, J. A. Rodríguez-Velamazań, N. Casati, D. Sheptyakov, X. Torrelles, M. Medarde","doi":"10.1103/physrevb.110.235156","DOIUrl":null,"url":null,"abstract":"Layered perovskites of general formula AA'CuFeO</a:mi>5</a:mn></a:msub></a:math> are characterized by the presence of spiral magnetic phases whose ordering temperatures <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msub><b:mi>T</b:mi><b:mi>spiral</b:mi></b:msub></b:math> can be tuned far beyond room temperature by introducing modest amounts of Cu/Fe chemical disorder in the crystal structure. This rare property makes these materials prominent candidates to host multiferroicity and magnetoelectric coupling at temperatures suitable for applications. Moreover, it has been proposed that the highest <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:msub><c:mi>T</c:mi><c:mi>spiral</c:mi></c:msub></c:math> value that can be reached in this structural family (<d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mo>∼</d:mo><d:mn>400</d:mn></d:math> K) corresponds to a paramagnetic-collinear-spiral triple point with potential to show exotic physics. Since generating high amounts of Cu/Fe disorder is experimentally difficult, the phase diagram region beyond the triple point has been barely explored. To fill this gap we investigate here eleven <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:msub><e:mi>YBa</e:mi><e:mrow><e:mn>1</e:mn><e:mo>−</e:mo><e:mi>x</e:mi></e:mrow></e:msub><e:msub><e:mi>Sr</e:mi><e:mi>x</e:mi></e:msub><e:msub><e:mi>CuFeO</e:mi><e:mn>5</e:mn></e:msub></e:mrow></e:math> solid solutions (<f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mn>0</f:mn><f:mo>≤</f:mo><f:mi>x</f:mi><f:mo>≤</f:mo><f:mn>1</f:mn></f:mrow></f:math> ), where we replace Ba with Sr with the aim of enhancing the impact of the experimentally available Cu/Fe disorder. Using a combination of bulk magnetization measurements, synchrotron x-ray and neutron powder diffraction we show that the spiral state with <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:msub><g:mi mathvariant=\"bold\">k</g:mi><g:mi>s</g:mi></g:msub><g:mo>=</g:mo><g:mrow><g:mo>(</g:mo><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac><g:mo>,</g:mo><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac><g:mo>,</g:mo><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac><g:mo>±</g:mo><g:mi mathvariant=\"italic\">q</g:mi><g:mo>)</g:mo></g:mrow></g:mrow></g:math> is destabilized beyond a critical Sr content, being replaced by a fully antiferromagnetic state with ordering temperature <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:mrow><j:msub><j:mi>T</j:mi><j:mrow><j:mi>coll</j:mi><j:mn>2</j:mn></j:mrow></j:msub><j:mo>≥</j:mo><j:msub><j:mi>T</j:mi><j:mi>spiral</j:mi></j:msub></j:mrow></j:math> and propagation vector <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:mrow><k:msub><k:mi mathvariant=\"bold\">k</k:mi><k:mrow><k:mi>c</k:mi><k:mn>2</k:mn></k:mrow></k:msub><k:mo>=</k:mo><k:mrow><k:mo>(</k:mo><k:mfrac><k:mn>1</k:mn><k:mn>2</k:mn></k:mfrac><k:mo>,</k:mo><k:mfrac><k:mn>1</k:mn><k:mn>2</k:mn></k:mfrac><k:mo>,</k:mo><k:mn>0</k:mn><k:mo>)</k:mo></k:mrow></k:mrow></k:math>. Interestingly, both <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msub><m:mi>T</m:mi><m:mi>spiral</m:mi></m:msub></m:math> and <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\"><n:msub><n:mi>T</n:mi><n:mrow><n:mi>coll</n:mi><n:mn>2</n:mn></n:mrow></n:msub></n:math> increase with <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\"><o:mi>x</o:mi></o:math> with comparable rates. This suggests a common, disorder-driven origin for both magnetic phases, consistent with theoretical predictions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"20 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YBa1−xSrxCuFeO5 layered perovskites: An attempt to explore the magnetic order beyond the paramagnetic-collinear-spiral triple point\",\"authors\":\"V. Porée, D. J. Gawryluk, T. Shang, J. A. Rodríguez-Velamazań, N. Casati, D. Sheptyakov, X. Torrelles, M. Medarde\",\"doi\":\"10.1103/physrevb.110.235156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered perovskites of general formula AA'CuFeO</a:mi>5</a:mn></a:msub></a:math> are characterized by the presence of spiral magnetic phases whose ordering temperatures <b:math xmlns:b=\\\"http://www.w3.org/1998/Math/MathML\\\"><b:msub><b:mi>T</b:mi><b:mi>spiral</b:mi></b:msub></b:math> can be tuned far beyond room temperature by introducing modest amounts of Cu/Fe chemical disorder in the crystal structure. This rare property makes these materials prominent candidates to host multiferroicity and magnetoelectric coupling at temperatures suitable for applications. Moreover, it has been proposed that the highest <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\"><c:msub><c:mi>T</c:mi><c:mi>spiral</c:mi></c:msub></c:math> value that can be reached in this structural family (<d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\"><d:mo>∼</d:mo><d:mn>400</d:mn></d:math> K) corresponds to a paramagnetic-collinear-spiral triple point with potential to show exotic physics. Since generating high amounts of Cu/Fe disorder is experimentally difficult, the phase diagram region beyond the triple point has been barely explored. To fill this gap we investigate here eleven <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\"><e:mrow><e:msub><e:mi>YBa</e:mi><e:mrow><e:mn>1</e:mn><e:mo>−</e:mo><e:mi>x</e:mi></e:mrow></e:msub><e:msub><e:mi>Sr</e:mi><e:mi>x</e:mi></e:msub><e:msub><e:mi>CuFeO</e:mi><e:mn>5</e:mn></e:msub></e:mrow></e:math> solid solutions (<f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\"><f:mrow><f:mn>0</f:mn><f:mo>≤</f:mo><f:mi>x</f:mi><f:mo>≤</f:mo><f:mn>1</f:mn></f:mrow></f:math> ), where we replace Ba with Sr with the aim of enhancing the impact of the experimentally available Cu/Fe disorder. Using a combination of bulk magnetization measurements, synchrotron x-ray and neutron powder diffraction we show that the spiral state with <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\"><g:mrow><g:msub><g:mi mathvariant=\\\"bold\\\">k</g:mi><g:mi>s</g:mi></g:msub><g:mo>=</g:mo><g:mrow><g:mo>(</g:mo><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac><g:mo>,</g:mo><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac><g:mo>,</g:mo><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac><g:mo>±</g:mo><g:mi mathvariant=\\\"italic\\\">q</g:mi><g:mo>)</g:mo></g:mrow></g:mrow></g:math> is destabilized beyond a critical Sr content, being replaced by a fully antiferromagnetic state with ordering temperature <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\"><j:mrow><j:msub><j:mi>T</j:mi><j:mrow><j:mi>coll</j:mi><j:mn>2</j:mn></j:mrow></j:msub><j:mo>≥</j:mo><j:msub><j:mi>T</j:mi><j:mi>spiral</j:mi></j:msub></j:mrow></j:math> and propagation vector <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\"><k:mrow><k:msub><k:mi mathvariant=\\\"bold\\\">k</k:mi><k:mrow><k:mi>c</k:mi><k:mn>2</k:mn></k:mrow></k:msub><k:mo>=</k:mo><k:mrow><k:mo>(</k:mo><k:mfrac><k:mn>1</k:mn><k:mn>2</k:mn></k:mfrac><k:mo>,</k:mo><k:mfrac><k:mn>1</k:mn><k:mn>2</k:mn></k:mfrac><k:mo>,</k:mo><k:mn>0</k:mn><k:mo>)</k:mo></k:mrow></k:mrow></k:math>. Interestingly, both <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:msub><m:mi>T</m:mi><m:mi>spiral</m:mi></m:msub></m:math> and <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\"><n:msub><n:mi>T</n:mi><n:mrow><n:mi>coll</n:mi><n:mn>2</n:mn></n:mrow></n:msub></n:math> increase with <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\"><o:mi>x</o:mi></o:math> with comparable rates. This suggests a common, disorder-driven origin for both magnetic phases, consistent with theoretical predictions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.235156\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.235156","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

通式AA'CuFeO5层状钙钛矿的特点是存在螺旋磁相,通过在晶体结构中引入适量的Cu/Fe化学无序,可以使其有序温度远高于室温。这种罕见的性质使这些材料在适合应用的温度下成为多铁性和磁电耦合的突出候选者。此外,有人提出,在这个结构族中可以达到的最高t螺旋值(~ 400 K)对应于顺磁-共线-螺旋三重点,具有显示奇异物理的潜力。由于产生大量的Cu/Fe无序在实验上是困难的,三相点以外的相图区域很少被探索。为了填补这一空白,我们研究了11个YBa1−xSrxCuFeO5固溶体(0≤x≤1),其中我们用Sr代替Ba,目的是增强实验中可用的Cu/Fe无序的影响。结合体磁化测量、同步加速器x射线和中子粉末衍射,我们发现,在Sr含量超过临界时,ks=(12,12,12±q)的螺旋态不稳定,取而代之的是有序温度Tcoll2≥Tspiral、传播矢量kc2=(12,12,0)的完全反铁磁态。有趣的是,Tspiral和Tcoll2都以相似的速率随x增加。这表明两个磁相有一个共同的、无序驱动的起源,与理论预测一致。2024年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YBa1−xSrxCuFeO5 layered perovskites: An attempt to explore the magnetic order beyond the paramagnetic-collinear-spiral triple point
Layered perovskites of general formula AA'CuFeO5 are characterized by the presence of spiral magnetic phases whose ordering temperatures Tspiral can be tuned far beyond room temperature by introducing modest amounts of Cu/Fe chemical disorder in the crystal structure. This rare property makes these materials prominent candidates to host multiferroicity and magnetoelectric coupling at temperatures suitable for applications. Moreover, it has been proposed that the highest Tspiral value that can be reached in this structural family (400 K) corresponds to a paramagnetic-collinear-spiral triple point with potential to show exotic physics. Since generating high amounts of Cu/Fe disorder is experimentally difficult, the phase diagram region beyond the triple point has been barely explored. To fill this gap we investigate here eleven YBa1xSrxCuFeO5 solid solutions (0x1 ), where we replace Ba with Sr with the aim of enhancing the impact of the experimentally available Cu/Fe disorder. Using a combination of bulk magnetization measurements, synchrotron x-ray and neutron powder diffraction we show that the spiral state with ks=(12,12,12±q) is destabilized beyond a critical Sr content, being replaced by a fully antiferromagnetic state with ordering temperature Tcoll2Tspiral and propagation vector kc2=(12,12,0). Interestingly, both Tspiral and Tcoll2 increase with x with comparable rates. This suggests a common, disorder-driven origin for both magnetic phases, consistent with theoretical predictions. Published by the American Physical Society 2024
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Collective modes and Raman response in Ta2NiSe5 Influence of pressure on the properties of the multigap type-I superconductor BeAu Competing ordinary and Hanle magnetoresistance in Pt and Ti thin films Resolving competition of charge density wave and superconducting phases using the matrix product state plus mean field algorithm Green's function approach to Josephson dot dynamics and application to quantum Mpemba effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1