“大图景”预测目的地吸引力:物理广度和背景广度的作用

IF 10.9 1区 管理学 Q1 ENVIRONMENTAL STUDIES Tourism Management Pub Date : 2024-12-28 DOI:10.1016/j.tourman.2024.105114
Jingyi Duan , Xuefeng Liang , Jiangqun Liao , Ryoichi Nakashima , Hongyi Shi , Chenhao Hu , Takatsune Kumada , Kaiping Peng , Song Tong
{"title":"“大图景”预测目的地吸引力:物理广度和背景广度的作用","authors":"Jingyi Duan ,&nbsp;Xuefeng Liang ,&nbsp;Jiangqun Liao ,&nbsp;Ryoichi Nakashima ,&nbsp;Hongyi Shi ,&nbsp;Chenhao Hu ,&nbsp;Takatsune Kumada ,&nbsp;Kaiping Peng ,&nbsp;Song Tong","doi":"10.1016/j.tourman.2024.105114","DOIUrl":null,"url":null,"abstract":"<div><div>In global tourism, renowned attractions with diverse visual styles consistently yield positive experiences. This study introduced the ‘big picture’ metaphor as a universal visual code underlying their appeal. Drawing on the broaden-and-build theory, we proposed a two-dimensional visual breadth (2DVB) model, identifying physical breadth (expansiveness of visual fields) and contextual breadth (variety of visual contexts) as key predictors of destination ratings. A deep neural network with advanced feature recognition was developed to operationalize this model. Analyzing 588,821 photos from 120 global destinations, our analyses showed that both the physical and contextual visual breadth positively predicted destination ratings, validating the model. This approach surpassed traditional content-based methods, offering a new framework for cross-scene analysis in tourism management, guiding strategic planning and promotion.</div></div>","PeriodicalId":48469,"journal":{"name":"Tourism Management","volume":"108 ","pages":"Article 105114"},"PeriodicalIF":10.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Big picture” predicts destination attractiveness: The role of physical breadth and contextual breadth\",\"authors\":\"Jingyi Duan ,&nbsp;Xuefeng Liang ,&nbsp;Jiangqun Liao ,&nbsp;Ryoichi Nakashima ,&nbsp;Hongyi Shi ,&nbsp;Chenhao Hu ,&nbsp;Takatsune Kumada ,&nbsp;Kaiping Peng ,&nbsp;Song Tong\",\"doi\":\"10.1016/j.tourman.2024.105114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In global tourism, renowned attractions with diverse visual styles consistently yield positive experiences. This study introduced the ‘big picture’ metaphor as a universal visual code underlying their appeal. Drawing on the broaden-and-build theory, we proposed a two-dimensional visual breadth (2DVB) model, identifying physical breadth (expansiveness of visual fields) and contextual breadth (variety of visual contexts) as key predictors of destination ratings. A deep neural network with advanced feature recognition was developed to operationalize this model. Analyzing 588,821 photos from 120 global destinations, our analyses showed that both the physical and contextual visual breadth positively predicted destination ratings, validating the model. This approach surpassed traditional content-based methods, offering a new framework for cross-scene analysis in tourism management, guiding strategic planning and promotion.</div></div>\",\"PeriodicalId\":48469,\"journal\":{\"name\":\"Tourism Management\",\"volume\":\"108 \",\"pages\":\"Article 105114\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tourism Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0261517724002334\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tourism Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0261517724002334","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

在全球旅游中,具有不同视觉风格的著名景点始终能带来积极的体验。这项研究将“大局观”比喻作为一种普遍的视觉代码,隐藏在它们的吸引力之下。根据拓宽-构建理论,我们提出了一个二维视觉宽度(2DVB)模型,将物理宽度(视野的广泛性)和语境宽度(视觉语境的多样性)确定为目的地评级的关键预测因素。为了实现该模型的可操作性,开发了一种具有高级特征识别功能的深度神经网络。分析了来自120个全球目的地的588,821张照片,我们的分析表明,物理和上下文视觉广度都能积极预测目的地评级,验证了模型。该方法超越了传统的基于内容的方法,为旅游管理中的跨场景分析提供了一个新的框架,指导战略规划和推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“Big picture” predicts destination attractiveness: The role of physical breadth and contextual breadth
In global tourism, renowned attractions with diverse visual styles consistently yield positive experiences. This study introduced the ‘big picture’ metaphor as a universal visual code underlying their appeal. Drawing on the broaden-and-build theory, we proposed a two-dimensional visual breadth (2DVB) model, identifying physical breadth (expansiveness of visual fields) and contextual breadth (variety of visual contexts) as key predictors of destination ratings. A deep neural network with advanced feature recognition was developed to operationalize this model. Analyzing 588,821 photos from 120 global destinations, our analyses showed that both the physical and contextual visual breadth positively predicted destination ratings, validating the model. This approach surpassed traditional content-based methods, offering a new framework for cross-scene analysis in tourism management, guiding strategic planning and promotion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tourism Management
Tourism Management Multiple-
CiteScore
24.10
自引率
7.90%
发文量
190
审稿时长
45 days
期刊介绍: Tourism Management, the preeminent scholarly journal, concentrates on the comprehensive management aspects, encompassing planning and policy, within the realm of travel and tourism. Adopting an interdisciplinary perspective, the journal delves into international, national, and regional tourism, addressing various management challenges. Its content mirrors this integrative approach, featuring primary research articles, progress in tourism research, case studies, research notes, discussions on current issues, and book reviews. Emphasizing scholarly rigor, all published papers are expected to contribute to theoretical and/or methodological advancements while offering specific insights relevant to tourism management and policy.
期刊最新文献
Exploring the cultural influence on tourists’ color perceptions: A study of tourist photography Shaping safety: Effective signage for tourist attractions Mapping the landscape of employer value propositions in Asian hotels through online job postings analysis Virtual reality tourism as a therapeutic tool: Assessing the well-being benefits of repeated restorative environment exposures for individuals with GAD Decoding the cultural heritage tourism landscape and visitor crowding behavior from the multidimensional embodied perspective: Insights from Chinese classical gardens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1