{"title":"高速四旋翼容错控制:一种基于模型的扩展状态观测器的失配干扰抑制方法","authors":"Jinfeng Chen;Fan Zhang;Bin Hu;Qin Lin","doi":"10.1109/LCSYS.2024.3519033","DOIUrl":null,"url":null,"abstract":"Fault-tolerant control of a quadrotor in extreme conditions, such as rotor failure and strong winds, is exceptionally challenging due to its underactuated nature, strong mismatched disturbances, and highly nonlinear multi-input and multi-output properties. This letter proposes a reduced attitude control approach that combines a model-based extended state observer (MB-ESO) and mismatched disturbance decoupling to control a quadrotor under strong winds and complete loss of two opposing rotors. Our MB-ESO based control provides a new theoretical framework for more general nonlinear systems by utilizing all measurable outputs, thereby maximizing the use of all available information to design a robust controller. Testing in a high-fidelity simulator shows that our approach outperforms the state-of-the-art Incremental Nonlinear Dynamic Inversion method.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2895-2900"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadrotor Fault-Tolerant Control at High Speed: A Model-Based Extended State Observer for Mismatched Disturbance Rejection Approach\",\"authors\":\"Jinfeng Chen;Fan Zhang;Bin Hu;Qin Lin\",\"doi\":\"10.1109/LCSYS.2024.3519033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault-tolerant control of a quadrotor in extreme conditions, such as rotor failure and strong winds, is exceptionally challenging due to its underactuated nature, strong mismatched disturbances, and highly nonlinear multi-input and multi-output properties. This letter proposes a reduced attitude control approach that combines a model-based extended state observer (MB-ESO) and mismatched disturbance decoupling to control a quadrotor under strong winds and complete loss of two opposing rotors. Our MB-ESO based control provides a new theoretical framework for more general nonlinear systems by utilizing all measurable outputs, thereby maximizing the use of all available information to design a robust controller. Testing in a high-fidelity simulator shows that our approach outperforms the state-of-the-art Incremental Nonlinear Dynamic Inversion method.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2895-2900\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804136/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804136/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Quadrotor Fault-Tolerant Control at High Speed: A Model-Based Extended State Observer for Mismatched Disturbance Rejection Approach
Fault-tolerant control of a quadrotor in extreme conditions, such as rotor failure and strong winds, is exceptionally challenging due to its underactuated nature, strong mismatched disturbances, and highly nonlinear multi-input and multi-output properties. This letter proposes a reduced attitude control approach that combines a model-based extended state observer (MB-ESO) and mismatched disturbance decoupling to control a quadrotor under strong winds and complete loss of two opposing rotors. Our MB-ESO based control provides a new theoretical framework for more general nonlinear systems by utilizing all measurable outputs, thereby maximizing the use of all available information to design a robust controller. Testing in a high-fidelity simulator shows that our approach outperforms the state-of-the-art Incremental Nonlinear Dynamic Inversion method.