{"title":"时变资源最优分配问题的固定时间收敛分布式算法","authors":"Zeng-Di Zhou;Ge Guo;Renyongkang Zhang","doi":"10.1109/TSIPN.2024.3511258","DOIUrl":null,"url":null,"abstract":"This article proposes a distributed time-varying optimization approach to address the dynamic resource allocation problem, leveraging a sliding mode technique. The algorithm integrates a fixed-time sliding mode component to ensure that the global equality constraints are met, and is coupled with a fixed-time distributed control mechanism involving the nonsmooth consensus idea for attaining the system's optimal state. It is designed to operate with minimal communication overhead, requiring only a single variable exchange between neighboring agents. This algorithm can effectuate the optimal resource allocation in both scenarios with time-varying cost functions of identical and nonidentical Hessians, where the latter can be non-quadratic. The practicality and superiority of our algorithm are validated by case studies.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"48-58"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fixed-Time Convergent Distributed Algorithm for Time-Varying Optimal Resource Allocation Problem\",\"authors\":\"Zeng-Di Zhou;Ge Guo;Renyongkang Zhang\",\"doi\":\"10.1109/TSIPN.2024.3511258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a distributed time-varying optimization approach to address the dynamic resource allocation problem, leveraging a sliding mode technique. The algorithm integrates a fixed-time sliding mode component to ensure that the global equality constraints are met, and is coupled with a fixed-time distributed control mechanism involving the nonsmooth consensus idea for attaining the system's optimal state. It is designed to operate with minimal communication overhead, requiring only a single variable exchange between neighboring agents. This algorithm can effectuate the optimal resource allocation in both scenarios with time-varying cost functions of identical and nonidentical Hessians, where the latter can be non-quadratic. The practicality and superiority of our algorithm are validated by case studies.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"11 \",\"pages\":\"48-58\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806773/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10806773/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Fixed-Time Convergent Distributed Algorithm for Time-Varying Optimal Resource Allocation Problem
This article proposes a distributed time-varying optimization approach to address the dynamic resource allocation problem, leveraging a sliding mode technique. The algorithm integrates a fixed-time sliding mode component to ensure that the global equality constraints are met, and is coupled with a fixed-time distributed control mechanism involving the nonsmooth consensus idea for attaining the system's optimal state. It is designed to operate with minimal communication overhead, requiring only a single variable exchange between neighboring agents. This algorithm can effectuate the optimal resource allocation in both scenarios with time-varying cost functions of identical and nonidentical Hessians, where the latter can be non-quadratic. The practicality and superiority of our algorithm are validated by case studies.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.