时变资源最优分配问题的固定时间收敛分布式算法

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal and Information Processing over Networks Pub Date : 2024-12-18 DOI:10.1109/TSIPN.2024.3511258
Zeng-Di Zhou;Ge Guo;Renyongkang Zhang
{"title":"时变资源最优分配问题的固定时间收敛分布式算法","authors":"Zeng-Di Zhou;Ge Guo;Renyongkang Zhang","doi":"10.1109/TSIPN.2024.3511258","DOIUrl":null,"url":null,"abstract":"This article proposes a distributed time-varying optimization approach to address the dynamic resource allocation problem, leveraging a sliding mode technique. The algorithm integrates a fixed-time sliding mode component to ensure that the global equality constraints are met, and is coupled with a fixed-time distributed control mechanism involving the nonsmooth consensus idea for attaining the system's optimal state. It is designed to operate with minimal communication overhead, requiring only a single variable exchange between neighboring agents. This algorithm can effectuate the optimal resource allocation in both scenarios with time-varying cost functions of identical and nonidentical Hessians, where the latter can be non-quadratic. The practicality and superiority of our algorithm are validated by case studies.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"48-58"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fixed-Time Convergent Distributed Algorithm for Time-Varying Optimal Resource Allocation Problem\",\"authors\":\"Zeng-Di Zhou;Ge Guo;Renyongkang Zhang\",\"doi\":\"10.1109/TSIPN.2024.3511258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a distributed time-varying optimization approach to address the dynamic resource allocation problem, leveraging a sliding mode technique. The algorithm integrates a fixed-time sliding mode component to ensure that the global equality constraints are met, and is coupled with a fixed-time distributed control mechanism involving the nonsmooth consensus idea for attaining the system's optimal state. It is designed to operate with minimal communication overhead, requiring only a single variable exchange between neighboring agents. This algorithm can effectuate the optimal resource allocation in both scenarios with time-varying cost functions of identical and nonidentical Hessians, where the latter can be non-quadratic. The practicality and superiority of our algorithm are validated by case studies.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"11 \",\"pages\":\"48-58\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806773/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10806773/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用滑模技术的分布式时变优化方法来解决动态资源分配问题。该算法集成了固定时间滑模组件以保证系统满足全局等式约束,并结合了包含非光滑一致性思想的固定时间分布式控制机制以达到系统的最优状态。它被设计成以最小的通信开销运行,只需要在相邻代理之间进行单个变量交换。该算法可以在具有相同和非相同Hessians的时变代价函数的两种情况下实现资源的最优分配,其中后者可以是非二次的。通过实例验证了算法的实用性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fixed-Time Convergent Distributed Algorithm for Time-Varying Optimal Resource Allocation Problem
This article proposes a distributed time-varying optimization approach to address the dynamic resource allocation problem, leveraging a sliding mode technique. The algorithm integrates a fixed-time sliding mode component to ensure that the global equality constraints are met, and is coupled with a fixed-time distributed control mechanism involving the nonsmooth consensus idea for attaining the system's optimal state. It is designed to operate with minimal communication overhead, requiring only a single variable exchange between neighboring agents. This algorithm can effectuate the optimal resource allocation in both scenarios with time-varying cost functions of identical and nonidentical Hessians, where the latter can be non-quadratic. The practicality and superiority of our algorithm are validated by case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Signal and Information Processing over Networks Computer Science-Computer Networks and Communications
CiteScore
5.80
自引率
12.50%
发文量
56
期刊介绍: The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.
期刊最新文献
Label Guided Graph Optimized Convolutional Network for Semi-Supervised Learning Event-Triggered Data-Driven Distributed LFC Using Controller-Dynamic-Linearization Method Robust Time-Varying Graph Signal Recovery for Dynamic Physical Sensor Network Data A Fixed-Time Convergent Distributed Algorithm for Time-Varying Optimal Resource Allocation Problem Memory-Enhanced Distributed Accelerated Algorithms for Coordinated Linear Computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1