Sabri Mustafa Kahya;Muhammet Sami Yavuz;Eckehard Steinbach
{"title":"HOOD:利用FMCW雷达实时检测人的存在和分布","authors":"Sabri Mustafa Kahya;Muhammet Sami Yavuz;Eckehard Steinbach","doi":"10.1109/TRS.2024.3514840","DOIUrl":null,"url":null,"abstract":"Detecting human presence indoors with millimeter-wave frequency-modulated continuous-wave (FMCW) radar faces challenges from both moving and stationary clutters. This work proposes a robust and real-time capable human presence and out-of-distribution (OOD) detection method using 60-GHz short-range FMCW radar. HOOD solves the human presence and OOD detection problems simultaneously in a single pipeline. Our solution relies on a reconstruction-based architecture and works with radar macro- and micro-range-Doppler images (RDIs). HOOD aims to accurately detect the presence of humans in the presence or absence of moving and stationary disturbers. Since HOOD is also an OOD detector, it aims to detect moving or stationary clutters as OOD in humans’ absence and predicts the current scene’s output as “no presence.” HOOD performs well in diverse scenarios, demonstrating its effectiveness across different human activities and situations. On our dataset collected with a 60-GHz short-range FMCW radar with only one transmit (Tx) and three receive antennas, we achieved an average area under the receiver operating characteristic curve (AUROC) of 94.36%. Additionally, our extensive evaluations and experiments demonstrate that HOOD outperforms state-of-the-art (SOTA) OOD detection methods in terms of common OOD detection metrics. Importantly, HOOD also perfectly fits on Raspberry Pi 3B+ with a advanced RISC machines (ARM) Cortex-A53 CPU, which showcases its versatility across different hardware environments. Videos of our human presence detection experiments are available at: \n<uri>https://muskahya.github.io/HOOD</uri>\n.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"44-56"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HOOD: Real-Time Human Presence and Out-of-Distribution Detection Using FMCW Radar\",\"authors\":\"Sabri Mustafa Kahya;Muhammet Sami Yavuz;Eckehard Steinbach\",\"doi\":\"10.1109/TRS.2024.3514840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting human presence indoors with millimeter-wave frequency-modulated continuous-wave (FMCW) radar faces challenges from both moving and stationary clutters. This work proposes a robust and real-time capable human presence and out-of-distribution (OOD) detection method using 60-GHz short-range FMCW radar. HOOD solves the human presence and OOD detection problems simultaneously in a single pipeline. Our solution relies on a reconstruction-based architecture and works with radar macro- and micro-range-Doppler images (RDIs). HOOD aims to accurately detect the presence of humans in the presence or absence of moving and stationary disturbers. Since HOOD is also an OOD detector, it aims to detect moving or stationary clutters as OOD in humans’ absence and predicts the current scene’s output as “no presence.” HOOD performs well in diverse scenarios, demonstrating its effectiveness across different human activities and situations. On our dataset collected with a 60-GHz short-range FMCW radar with only one transmit (Tx) and three receive antennas, we achieved an average area under the receiver operating characteristic curve (AUROC) of 94.36%. Additionally, our extensive evaluations and experiments demonstrate that HOOD outperforms state-of-the-art (SOTA) OOD detection methods in terms of common OOD detection metrics. Importantly, HOOD also perfectly fits on Raspberry Pi 3B+ with a advanced RISC machines (ARM) Cortex-A53 CPU, which showcases its versatility across different hardware environments. Videos of our human presence detection experiments are available at: \\n<uri>https://muskahya.github.io/HOOD</uri>\\n.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"3 \",\"pages\":\"44-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10789192/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10789192/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HOOD: Real-Time Human Presence and Out-of-Distribution Detection Using FMCW Radar
Detecting human presence indoors with millimeter-wave frequency-modulated continuous-wave (FMCW) radar faces challenges from both moving and stationary clutters. This work proposes a robust and real-time capable human presence and out-of-distribution (OOD) detection method using 60-GHz short-range FMCW radar. HOOD solves the human presence and OOD detection problems simultaneously in a single pipeline. Our solution relies on a reconstruction-based architecture and works with radar macro- and micro-range-Doppler images (RDIs). HOOD aims to accurately detect the presence of humans in the presence or absence of moving and stationary disturbers. Since HOOD is also an OOD detector, it aims to detect moving or stationary clutters as OOD in humans’ absence and predicts the current scene’s output as “no presence.” HOOD performs well in diverse scenarios, demonstrating its effectiveness across different human activities and situations. On our dataset collected with a 60-GHz short-range FMCW radar with only one transmit (Tx) and three receive antennas, we achieved an average area under the receiver operating characteristic curve (AUROC) of 94.36%. Additionally, our extensive evaluations and experiments demonstrate that HOOD outperforms state-of-the-art (SOTA) OOD detection methods in terms of common OOD detection metrics. Importantly, HOOD also perfectly fits on Raspberry Pi 3B+ with a advanced RISC machines (ARM) Cortex-A53 CPU, which showcases its versatility across different hardware environments. Videos of our human presence detection experiments are available at:
https://muskahya.github.io/HOOD
.