PaVE 2.0:乳头状瘤病毒知识的幕后。

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Biology Pub Date : 2024-12-26 DOI:10.1016/j.jmb.2024.168925
Jennifer Dommer, Koenraad Van Doorslaer, Cyrus Afrasiabi, Kristen Browne, Sam Ezeji, Lewis Kim, Michael Dolan, Alison A McBride
{"title":"PaVE 2.0:乳头状瘤病毒知识的幕后。","authors":"Jennifer Dommer, Koenraad Van Doorslaer, Cyrus Afrasiabi, Kristen Browne, Sam Ezeji, Lewis Kim, Michael Dolan, Alison A McBride","doi":"10.1016/j.jmb.2024.168925","DOIUrl":null,"url":null,"abstract":"<p><p>The Papilloma Virus Episteme (PaVE) https://pave.niaid.nih.gov/ was initiated by NIAID in 2008 to provide a highly curated bioinformatic and knowledge resource for the papillomavirus scientific community. It rapidly became the fundamental and core resource for papillomavirus researchers and clinicians worldwide. Over time, the software infrastructure became severely outdated. In PaVE 2.0, the underlying libraries and hosting platform have been completely upgraded and rebuilt using Amazon Web Services (AWS) tools and automated CI/CD (continuous integration and deployment) pipelines for deployment of the application and data (now in AWS S3 cloud storage). PaVE 2.0 is hosted on three AWS ECS (elastic container service) using the NIAID Operations & Engineering Branch's Monarch tech stack and terraform. A new Celery queue supports longer running tasks. The framework is Python Flask with a JavaScript/JINJA template front end, and the database switched from MySQL to Neo4j. A Swagger API (Application Programming Interface) performs database queries, and executes jobs for BLAST, MAFFT, and the L1 typing tooland will allow future programmatic data access. All major tools such as BLAST, the L1 typing tool, genome locus viewer, phylogenetic tree generator, multiple sequence alignment, and protein structure viewer were modernized and enhanced to support more users. Multiple sequence alignment uses MAFFT instead of COBALT. The protein structure viewer was changed from Jmol to Mol*, the new embeddable viewer used by RCSB (Research Collaboratory for Structural Bioinformatics). In summary, PaVE 2.0 allows us to continue to provide this essential resource with an open-source framework that could be used as a template for molecular biology databases of other viruses.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"168925"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PaVE 2.0: Behind the Scenes of the Papillomavirus Episteme.\",\"authors\":\"Jennifer Dommer, Koenraad Van Doorslaer, Cyrus Afrasiabi, Kristen Browne, Sam Ezeji, Lewis Kim, Michael Dolan, Alison A McBride\",\"doi\":\"10.1016/j.jmb.2024.168925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Papilloma Virus Episteme (PaVE) https://pave.niaid.nih.gov/ was initiated by NIAID in 2008 to provide a highly curated bioinformatic and knowledge resource for the papillomavirus scientific community. It rapidly became the fundamental and core resource for papillomavirus researchers and clinicians worldwide. Over time, the software infrastructure became severely outdated. In PaVE 2.0, the underlying libraries and hosting platform have been completely upgraded and rebuilt using Amazon Web Services (AWS) tools and automated CI/CD (continuous integration and deployment) pipelines for deployment of the application and data (now in AWS S3 cloud storage). PaVE 2.0 is hosted on three AWS ECS (elastic container service) using the NIAID Operations & Engineering Branch's Monarch tech stack and terraform. A new Celery queue supports longer running tasks. The framework is Python Flask with a JavaScript/JINJA template front end, and the database switched from MySQL to Neo4j. A Swagger API (Application Programming Interface) performs database queries, and executes jobs for BLAST, MAFFT, and the L1 typing tooland will allow future programmatic data access. All major tools such as BLAST, the L1 typing tool, genome locus viewer, phylogenetic tree generator, multiple sequence alignment, and protein structure viewer were modernized and enhanced to support more users. Multiple sequence alignment uses MAFFT instead of COBALT. The protein structure viewer was changed from Jmol to Mol*, the new embeddable viewer used by RCSB (Research Collaboratory for Structural Bioinformatics). In summary, PaVE 2.0 allows us to continue to provide this essential resource with an open-source framework that could be used as a template for molecular biology databases of other viruses.</p>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\" \",\"pages\":\"168925\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmb.2024.168925\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2024.168925","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳头瘤病毒知识(PaVE) https://pave.niaid.nih.gov/由NIAID于2008年发起,旨在为乳头瘤病毒科学界提供高度整理的生物信息学和知识资源。它迅速成为全球乳头瘤病毒研究人员和临床医生的基础和核心资源。随着时间的推移,软件基础结构变得严重过时。在PaVE 2.0中,底层库和托管平台已经使用Amazon Web Services (AWS)工具和用于部署应用程序和数据(现在在AWS S3云存储中)的自动化CI/CD(持续集成和部署)管道进行了完全升级和重建。PaVE 2.0托管在三个AWS ECS容器上,使用NIAID运营与工程分部的Monarch技术堆栈和平台。新的芹菜队列支持长时间运行的任务。框架是Python Flask,前端是JavaScript/JINJA模板,数据库从MySQL切换到Neo4j。Swagger API(应用程序编程接口)执行数据库查询,并为BLAST、MAFFT和L1输入工具执行作业,并将允许未来的编程数据访问。所有主要工具,如BLAST、L1分型工具、基因组位点查看器、系统发育树生成器、多序列比对和蛋白质结构查看器都进行了现代化和增强,以支持更多的用户。多序列比对使用MAFFT代替COBALT。蛋白质结构查看器由Jmol改为RCSB使用的新型可嵌入查看器Mol*。总之,PaVE 2.0允许我们继续提供这一基本资源,并提供一个开源框架,可以用作其他病毒分子生物学数据库的模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PaVE 2.0: Behind the Scenes of the Papillomavirus Episteme.

The Papilloma Virus Episteme (PaVE) https://pave.niaid.nih.gov/ was initiated by NIAID in 2008 to provide a highly curated bioinformatic and knowledge resource for the papillomavirus scientific community. It rapidly became the fundamental and core resource for papillomavirus researchers and clinicians worldwide. Over time, the software infrastructure became severely outdated. In PaVE 2.0, the underlying libraries and hosting platform have been completely upgraded and rebuilt using Amazon Web Services (AWS) tools and automated CI/CD (continuous integration and deployment) pipelines for deployment of the application and data (now in AWS S3 cloud storage). PaVE 2.0 is hosted on three AWS ECS (elastic container service) using the NIAID Operations & Engineering Branch's Monarch tech stack and terraform. A new Celery queue supports longer running tasks. The framework is Python Flask with a JavaScript/JINJA template front end, and the database switched from MySQL to Neo4j. A Swagger API (Application Programming Interface) performs database queries, and executes jobs for BLAST, MAFFT, and the L1 typing tooland will allow future programmatic data access. All major tools such as BLAST, the L1 typing tool, genome locus viewer, phylogenetic tree generator, multiple sequence alignment, and protein structure viewer were modernized and enhanced to support more users. Multiple sequence alignment uses MAFFT instead of COBALT. The protein structure viewer was changed from Jmol to Mol*, the new embeddable viewer used by RCSB (Research Collaboratory for Structural Bioinformatics). In summary, PaVE 2.0 allows us to continue to provide this essential resource with an open-source framework that could be used as a template for molecular biology databases of other viruses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
期刊最新文献
Outside Front Cover Editorial Board A triple-pose complex between an extended WIP motif and a C-terminal SH3 domain modulates cortactin activity. Non-nuclear estrogen receptor signaling as a promising therapeutic target to reverse Alzheimer's disease-related autophagy deficits and upregulate the membrane ESR1 and ESR2 which involves DNA methylation-dependent mechanisms. Multifaceted roles of the ATG8 protein family in plant autophagy: from autophagosome biogenesis to cargo recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1