{"title":"USP44调节HEXIM1稳定性抑制口腔鳞状细胞癌的发生和转移。","authors":"Shuai Chen, Kefan Wu, Yingrui Zong, Zhenzhen Hou, Zhifen Deng, Zongping Xia","doi":"10.1186/s13062-024-00573-z","DOIUrl":null,"url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is the most frequent type of oral malignancy with high metastasis and poor prognosis. The deubiquitinating enzyme Ubiquitin Specific Peptidase 44 (USP44) regulates the mitotic checkpoint, and its deficiency leads to aneuploidy and increases tumor incidence. However, the role of USP44 in OSCC is not well understood. Herein, we analyzed mRNA sequencing data of OSCC samples downloaded from the TCGA and GEO databases and found that USP44 was decreased in human OSCC tissues and was positively correlated to the survival of OSCC patients. To investigate the biological impact of USP44, we used recombinant lentiviruses to overexpress or knockdown USP44 expression in OSCC cell lines, which were also injected subcutaneously or into the lateral tail vein of Male BALB/c nude mice to model tumorigenesis or lung metastasis in vivo, respectively. The results showed that overexpression of USP44 inhibited malignant cell phenotypes in vitro and suppressed tumor growth and lung metastasis in vivo, while its downregulation had the opposite effects. Comprehensive proteomic analyses through Co-IP mass spectrometry and label-free quantitative LC-MS/MS methods identified 112 differentially expressed proteins positively regulated by USP44, among which 13 were involved in cancer-related pathways including apoptotic signaling and cell cycle regulation. PPI analysis identified Hexamethylene Bis-Acetamide-Inducible Protein 1 (HEXIM1) as the hub protein. Upregulation of USP44 enhanced HEXIM1 protein stability, leading to its higher expression in OSCC cells. Silencing of HEXIM1 further enhanced the malignant phenotype of OSCC cells. At the same time, HEXIM1 knockdown reversed the antitumor effects of USP44. These findings demonstrated that USP44 acted as a critical tumor suppressor in OSCC by inhibiting cell proliferation and metastasis through the stabilization of HEXIM1 protein, suggesting that USP44-HEXIM1 axis is a promising target for OSCC therapy.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"143"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670470/pdf/","citationCount":"0","resultStr":"{\"title\":\"USP44 regulates HEXIM1 stability to inhibit tumorigenesis and metastasis of oral squamous cell carcinoma.\",\"authors\":\"Shuai Chen, Kefan Wu, Yingrui Zong, Zhenzhen Hou, Zhifen Deng, Zongping Xia\",\"doi\":\"10.1186/s13062-024-00573-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral squamous cell carcinoma (OSCC) is the most frequent type of oral malignancy with high metastasis and poor prognosis. The deubiquitinating enzyme Ubiquitin Specific Peptidase 44 (USP44) regulates the mitotic checkpoint, and its deficiency leads to aneuploidy and increases tumor incidence. However, the role of USP44 in OSCC is not well understood. Herein, we analyzed mRNA sequencing data of OSCC samples downloaded from the TCGA and GEO databases and found that USP44 was decreased in human OSCC tissues and was positively correlated to the survival of OSCC patients. To investigate the biological impact of USP44, we used recombinant lentiviruses to overexpress or knockdown USP44 expression in OSCC cell lines, which were also injected subcutaneously or into the lateral tail vein of Male BALB/c nude mice to model tumorigenesis or lung metastasis in vivo, respectively. The results showed that overexpression of USP44 inhibited malignant cell phenotypes in vitro and suppressed tumor growth and lung metastasis in vivo, while its downregulation had the opposite effects. Comprehensive proteomic analyses through Co-IP mass spectrometry and label-free quantitative LC-MS/MS methods identified 112 differentially expressed proteins positively regulated by USP44, among which 13 were involved in cancer-related pathways including apoptotic signaling and cell cycle regulation. PPI analysis identified Hexamethylene Bis-Acetamide-Inducible Protein 1 (HEXIM1) as the hub protein. Upregulation of USP44 enhanced HEXIM1 protein stability, leading to its higher expression in OSCC cells. Silencing of HEXIM1 further enhanced the malignant phenotype of OSCC cells. At the same time, HEXIM1 knockdown reversed the antitumor effects of USP44. These findings demonstrated that USP44 acted as a critical tumor suppressor in OSCC by inhibiting cell proliferation and metastasis through the stabilization of HEXIM1 protein, suggesting that USP44-HEXIM1 axis is a promising target for OSCC therapy.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"19 1\",\"pages\":\"143\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670470/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-024-00573-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00573-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
口腔鳞状细胞癌(OSCC)是最常见的口腔恶性肿瘤,转移率高,预后差。去泛素化酶泛素特异性肽酶44 (Ubiquitin Specific Peptidase 44, USP44)调节有丝分裂检查点,其缺乏导致非整倍体并增加肿瘤发生率。然而,USP44在OSCC中的作用尚不清楚。在此,我们分析了从TCGA和GEO数据库下载的OSCC样本的mRNA测序数据,发现USP44在人OSCC组织中减少,并与OSCC患者的生存呈正相关。为了研究USP44的生物学影响,我们利用重组慢病毒在OSCC细胞系中过表达或敲低USP44的表达,并分别皮下注射或注入雄性BALB/c裸鼠尾侧静脉,在体内模拟肿瘤发生或肺转移。结果表明,USP44过表达在体外抑制恶性细胞表型,在体内抑制肿瘤生长和肺转移,而其下调则具有相反的作用。通过Co-IP质谱和无标记定量LC-MS/MS方法进行综合蛋白质组学分析,鉴定出112个受USP44正向调控的差异表达蛋白,其中13个参与凋亡信号和细胞周期调控等癌症相关途径。PPI分析鉴定出六亚甲基双乙酰酰胺诱导蛋白1 (HEXIM1)为枢纽蛋白。USP44的上调增强了HEXIM1蛋白的稳定性,导致其在OSCC细胞中的表达增加。沉默HEXIM1进一步增强了OSCC细胞的恶性表型。同时,HEXIM1敲低逆转了USP44的抗肿瘤作用。这些研究结果表明,USP44通过稳定HEXIM1蛋白抑制细胞增殖和转移,在OSCC中发挥关键抑瘤因子的作用,提示USP44-HEXIM1轴是OSCC治疗的一个有希望的靶点。
USP44 regulates HEXIM1 stability to inhibit tumorigenesis and metastasis of oral squamous cell carcinoma.
Oral squamous cell carcinoma (OSCC) is the most frequent type of oral malignancy with high metastasis and poor prognosis. The deubiquitinating enzyme Ubiquitin Specific Peptidase 44 (USP44) regulates the mitotic checkpoint, and its deficiency leads to aneuploidy and increases tumor incidence. However, the role of USP44 in OSCC is not well understood. Herein, we analyzed mRNA sequencing data of OSCC samples downloaded from the TCGA and GEO databases and found that USP44 was decreased in human OSCC tissues and was positively correlated to the survival of OSCC patients. To investigate the biological impact of USP44, we used recombinant lentiviruses to overexpress or knockdown USP44 expression in OSCC cell lines, which were also injected subcutaneously or into the lateral tail vein of Male BALB/c nude mice to model tumorigenesis or lung metastasis in vivo, respectively. The results showed that overexpression of USP44 inhibited malignant cell phenotypes in vitro and suppressed tumor growth and lung metastasis in vivo, while its downregulation had the opposite effects. Comprehensive proteomic analyses through Co-IP mass spectrometry and label-free quantitative LC-MS/MS methods identified 112 differentially expressed proteins positively regulated by USP44, among which 13 were involved in cancer-related pathways including apoptotic signaling and cell cycle regulation. PPI analysis identified Hexamethylene Bis-Acetamide-Inducible Protein 1 (HEXIM1) as the hub protein. Upregulation of USP44 enhanced HEXIM1 protein stability, leading to its higher expression in OSCC cells. Silencing of HEXIM1 further enhanced the malignant phenotype of OSCC cells. At the same time, HEXIM1 knockdown reversed the antitumor effects of USP44. These findings demonstrated that USP44 acted as a critical tumor suppressor in OSCC by inhibiting cell proliferation and metastasis through the stabilization of HEXIM1 protein, suggesting that USP44-HEXIM1 axis is a promising target for OSCC therapy.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.