Sebastiaan Dalle, Chiel Poffé, Wout Lauriks, Ruben Robberechts, Myrthe Stalmans, Romano Terrasi, Giulio G Muccioli, Katrien Koppo
{"title":"循环内源性大麻素与超耐力运动中的精神警觉性有关。","authors":"Sebastiaan Dalle, Chiel Poffé, Wout Lauriks, Ruben Robberechts, Myrthe Stalmans, Romano Terrasi, Giulio G Muccioli, Katrien Koppo","doi":"10.1089/can.2024.0169","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Ultra-endurance exercise events result in central fatigue, impacting on mental alertness and decision making. Endocannabinoids are typically elevated during endurance exercise and have been implicated in central processes such as learning and memory, but their role in central fatigue has never been studied. <b>Materials and Methods:</b> Twenty-four recreational male ultrarunners participated in a 100-km trail run, and 18 of them completed at least 60 km and were included in the analyses. A cognitive test battery to assess median reaction time (MRT) and median movement time during a reaction time task and median response latency during a rapid visual information processing task was completed prior to and immediately after the trail. Blood serum samples pre- and postexercise were analyzed for endocannabinoids and related lipids (anadamide: AEA; 2-arachidonoylglycerol: 2-AG; palmitoylethanolamide: PEA; oleoylethanolamide: OEA; stearoylethanolamine: SEA) via liquid chromatography-mass spectrometry. <b>Results:</b> Ultra-endurance exercise worsened all cognitive parameters and increased abundance of AEA, PEA, OEA, and SEA but not 2-AG. Interestingly, the exercise-induced change in MRT showed moderate, positive correlations with the change in different endocannabinoids, that is, AEA (<i>r</i> = 0.5164, <i>p</i> = 0.0338), PEA (<i>r</i> = 0.5466, <i>p</i> = 0.0251), and OEA (<i>r</i> = 0.5442, <i>p</i> = 0.0239). <b>Conclusion:</b> These results indicate a potential role of endocannabinoids on mental alertness following ultra-endurance exercise.</p>","PeriodicalId":9386,"journal":{"name":"Cannabis and Cannabinoid Research","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circulating Endocannabinoids Are Associated with Mental Alertness During Ultra-Endurance Exercise.\",\"authors\":\"Sebastiaan Dalle, Chiel Poffé, Wout Lauriks, Ruben Robberechts, Myrthe Stalmans, Romano Terrasi, Giulio G Muccioli, Katrien Koppo\",\"doi\":\"10.1089/can.2024.0169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> Ultra-endurance exercise events result in central fatigue, impacting on mental alertness and decision making. Endocannabinoids are typically elevated during endurance exercise and have been implicated in central processes such as learning and memory, but their role in central fatigue has never been studied. <b>Materials and Methods:</b> Twenty-four recreational male ultrarunners participated in a 100-km trail run, and 18 of them completed at least 60 km and were included in the analyses. A cognitive test battery to assess median reaction time (MRT) and median movement time during a reaction time task and median response latency during a rapid visual information processing task was completed prior to and immediately after the trail. Blood serum samples pre- and postexercise were analyzed for endocannabinoids and related lipids (anadamide: AEA; 2-arachidonoylglycerol: 2-AG; palmitoylethanolamide: PEA; oleoylethanolamide: OEA; stearoylethanolamine: SEA) via liquid chromatography-mass spectrometry. <b>Results:</b> Ultra-endurance exercise worsened all cognitive parameters and increased abundance of AEA, PEA, OEA, and SEA but not 2-AG. Interestingly, the exercise-induced change in MRT showed moderate, positive correlations with the change in different endocannabinoids, that is, AEA (<i>r</i> = 0.5164, <i>p</i> = 0.0338), PEA (<i>r</i> = 0.5466, <i>p</i> = 0.0251), and OEA (<i>r</i> = 0.5442, <i>p</i> = 0.0239). <b>Conclusion:</b> These results indicate a potential role of endocannabinoids on mental alertness following ultra-endurance exercise.</p>\",\"PeriodicalId\":9386,\"journal\":{\"name\":\"Cannabis and Cannabinoid Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cannabis and Cannabinoid Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/can.2024.0169\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cannabis and Cannabinoid Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/can.2024.0169","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
简介:超耐力运动项目导致中枢疲劳,影响精神警觉性和决策能力。内源性大麻素在耐力运动中通常会升高,并且与学习和记忆等中枢过程有关,但它们在中枢疲劳中的作用从未被研究过。材料与方法:24名娱乐性男性超跑者参加了100公里越野跑,其中18人至少跑了60公里,并被纳入分析。在实验前后分别进行认知测试,以评估快速视觉信息处理任务中的中位反应时间(MRT)和中位运动时间以及中位反应延迟。对运动前后的血清样本进行内源性大麻素及相关脂质(阿纳达胺:AEA;2-arachidonoylglycerol: 2-AG;palmitoylethanolamide:豌豆;oleoylethanolamide: OEA;脂酰乙醇胺(SEA),液相色谱-质谱联用。结果:超耐力运动使所有认知参数恶化,AEA、PEA、OEA和SEA的丰富度增加,但2-AG没有增加。有趣的是,运动引起的MRT变化与不同内源性大麻素的变化呈中度正相关,即AEA (r = 0.5164, p = 0.0338)、PEA (r = 0.5466, p = 0.0251)和OEA (r = 0.5442, p = 0.0239)。结论:这些结果提示内源性大麻素对超耐力运动后精神警觉性的潜在作用。
Circulating Endocannabinoids Are Associated with Mental Alertness During Ultra-Endurance Exercise.
Introduction: Ultra-endurance exercise events result in central fatigue, impacting on mental alertness and decision making. Endocannabinoids are typically elevated during endurance exercise and have been implicated in central processes such as learning and memory, but their role in central fatigue has never been studied. Materials and Methods: Twenty-four recreational male ultrarunners participated in a 100-km trail run, and 18 of them completed at least 60 km and were included in the analyses. A cognitive test battery to assess median reaction time (MRT) and median movement time during a reaction time task and median response latency during a rapid visual information processing task was completed prior to and immediately after the trail. Blood serum samples pre- and postexercise were analyzed for endocannabinoids and related lipids (anadamide: AEA; 2-arachidonoylglycerol: 2-AG; palmitoylethanolamide: PEA; oleoylethanolamide: OEA; stearoylethanolamine: SEA) via liquid chromatography-mass spectrometry. Results: Ultra-endurance exercise worsened all cognitive parameters and increased abundance of AEA, PEA, OEA, and SEA but not 2-AG. Interestingly, the exercise-induced change in MRT showed moderate, positive correlations with the change in different endocannabinoids, that is, AEA (r = 0.5164, p = 0.0338), PEA (r = 0.5466, p = 0.0251), and OEA (r = 0.5442, p = 0.0239). Conclusion: These results indicate a potential role of endocannabinoids on mental alertness following ultra-endurance exercise.