Katia Rupel, Lidia Fanfoni, Jacopo Dus, Martina Tommasini, Davide Porrelli, Barbara Medagli, Federica Canfora, Daniela Adamo, Roberto Di Lenarda, Giulia Ottaviani, Matteo Biasotto
{"title":"生物相容性纤维素-四苯基酰腙自组装纳米胶束的开发和表征,酸触发释放阿霉素用于癌症治疗。","authors":"Katia Rupel, Lidia Fanfoni, Jacopo Dus, Martina Tommasini, Davide Porrelli, Barbara Medagli, Federica Canfora, Daniela Adamo, Roberto Di Lenarda, Giulia Ottaviani, Matteo Biasotto","doi":"10.3390/cimb46120853","DOIUrl":null,"url":null,"abstract":"<p><p>The development of anticancer diagnostic and therapeutic strategies is of crucial importance to improve efficacy and therapeutic specificity. Here, we describe the synthesis and characterization of fluorescent self-assembling nanomicelles (NMs) based on a biocompatible polysaccharide (cellulose, CE) functionalized with a tetraphenyl ethylene derivative (TPEHy) and loaded with Doxorubicin (DOX) with aggregation-induced emission (AIE) properties and pH-dependent drug release. We obtained CE-TPEHy-NMs with an average diameter of 60 ± 17 nm for unloaded NMs and 86 ± 25 nm for NMs loaded with DOX, respectively. Upon testing different conditions, we obtained an encapsulation efficiency of 86% and a loading capacity of 90%. A controlled dialysis experiment showed that the release of DOX after 48 h is minimal at pH 7.4 (11%), increasing at pH 6.5 (50%) and at its maximum at pH 4.5 (80%). The cytotoxicity of blank and loaded CE-TPEHy-NMs at increasing concentrations and different pH conditions was tested on a MG-63 human osteosarcoma cell line. Based on viability assays at pH 7.4, neither unloaded nor loaded CE-TPEHy-NMs exerted any inhibition on cell proliferation. At pH 6.5, proliferation inhibition significantly increased, confirming the pH-dependent release. We characterized and studied the performance of CE-based amphiphilic, biocompatible NMs for controlled drug release in acidic conditions, such as tumor microenvironments. Further studies are required to optimize their synthesis process and to validate their antitumoral properties in vivo.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"46 12","pages":"14244-14258"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674980/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Characterization of Biocompatible Cellulose-Tetraphenylethylene Hydrazone Self-Assembling Nanomicelles with Acidity-Triggered Release of Doxorubicin for Cancer Therapy.\",\"authors\":\"Katia Rupel, Lidia Fanfoni, Jacopo Dus, Martina Tommasini, Davide Porrelli, Barbara Medagli, Federica Canfora, Daniela Adamo, Roberto Di Lenarda, Giulia Ottaviani, Matteo Biasotto\",\"doi\":\"10.3390/cimb46120853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of anticancer diagnostic and therapeutic strategies is of crucial importance to improve efficacy and therapeutic specificity. Here, we describe the synthesis and characterization of fluorescent self-assembling nanomicelles (NMs) based on a biocompatible polysaccharide (cellulose, CE) functionalized with a tetraphenyl ethylene derivative (TPEHy) and loaded with Doxorubicin (DOX) with aggregation-induced emission (AIE) properties and pH-dependent drug release. We obtained CE-TPEHy-NMs with an average diameter of 60 ± 17 nm for unloaded NMs and 86 ± 25 nm for NMs loaded with DOX, respectively. Upon testing different conditions, we obtained an encapsulation efficiency of 86% and a loading capacity of 90%. A controlled dialysis experiment showed that the release of DOX after 48 h is minimal at pH 7.4 (11%), increasing at pH 6.5 (50%) and at its maximum at pH 4.5 (80%). The cytotoxicity of blank and loaded CE-TPEHy-NMs at increasing concentrations and different pH conditions was tested on a MG-63 human osteosarcoma cell line. Based on viability assays at pH 7.4, neither unloaded nor loaded CE-TPEHy-NMs exerted any inhibition on cell proliferation. At pH 6.5, proliferation inhibition significantly increased, confirming the pH-dependent release. We characterized and studied the performance of CE-based amphiphilic, biocompatible NMs for controlled drug release in acidic conditions, such as tumor microenvironments. Further studies are required to optimize their synthesis process and to validate their antitumoral properties in vivo.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":\"46 12\",\"pages\":\"14244-14258\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674980/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb46120853\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb46120853","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Development and Characterization of Biocompatible Cellulose-Tetraphenylethylene Hydrazone Self-Assembling Nanomicelles with Acidity-Triggered Release of Doxorubicin for Cancer Therapy.
The development of anticancer diagnostic and therapeutic strategies is of crucial importance to improve efficacy and therapeutic specificity. Here, we describe the synthesis and characterization of fluorescent self-assembling nanomicelles (NMs) based on a biocompatible polysaccharide (cellulose, CE) functionalized with a tetraphenyl ethylene derivative (TPEHy) and loaded with Doxorubicin (DOX) with aggregation-induced emission (AIE) properties and pH-dependent drug release. We obtained CE-TPEHy-NMs with an average diameter of 60 ± 17 nm for unloaded NMs and 86 ± 25 nm for NMs loaded with DOX, respectively. Upon testing different conditions, we obtained an encapsulation efficiency of 86% and a loading capacity of 90%. A controlled dialysis experiment showed that the release of DOX after 48 h is minimal at pH 7.4 (11%), increasing at pH 6.5 (50%) and at its maximum at pH 4.5 (80%). The cytotoxicity of blank and loaded CE-TPEHy-NMs at increasing concentrations and different pH conditions was tested on a MG-63 human osteosarcoma cell line. Based on viability assays at pH 7.4, neither unloaded nor loaded CE-TPEHy-NMs exerted any inhibition on cell proliferation. At pH 6.5, proliferation inhibition significantly increased, confirming the pH-dependent release. We characterized and studied the performance of CE-based amphiphilic, biocompatible NMs for controlled drug release in acidic conditions, such as tumor microenvironments. Further studies are required to optimize their synthesis process and to validate their antitumoral properties in vivo.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.