Hamama Guetteche, Ali Jarrar, Sascha Wetters, Leila Rouabah, Abdelkader Rouabah, Abdelkader Benbelkacem, Ruzanna Sadoyan, Adnan Kanbar, Peter Nick
{"title":"利用RAPD和SSR标记对阿尔及利亚大麦地方品种与中东和欧洲地方品种的遗传评价和定位。","authors":"Hamama Guetteche, Ali Jarrar, Sascha Wetters, Leila Rouabah, Abdelkader Rouabah, Abdelkader Benbelkacem, Ruzanna Sadoyan, Adnan Kanbar, Peter Nick","doi":"10.3390/cimb46120852","DOIUrl":null,"url":null,"abstract":"<p><p>Landraces are a critical genetic resource for resilience breeding, offering solutions to prepare agriculture for the challenges posed by climate change. Their efficient utilisation depends on understanding their history and genetic relationships. The current study investigates the phylogenetic relationships of barley landraces from Algeria, varieties from the Near and Middle East, traditional landraces, and modern cultivars from Europe. Using a core set of 33 varieties, including the wild ancestor <i>Hordeum spontaneum</i> from Armenia, genetic diversity was analysed with Random Amplified Polymorphic DNA (RAPD) and Simple Sequence Repeat (SSR) markers spanning all barley chromosomes. Based on the SSR-based phylogeny, the Algerian varieties are well clustered with those from the Near East, while distinct from the European varieties. The findings from RAPD markers partially support these results. Using exclusively traditional landraces, where a region of origin can be defined, the SSR markers are analysed separately for each chromosome individually, and the resulting clades are represented by the respective region of origin. This strategy resolves qualitative differences in geographic resolution, depending on the chromosome. While marker HvB23D (chromosome 4) separated the wild <i>H. spontaneum</i> from all domesticated genotypes, markers Bmag19 and Hv13GIII (chromosome 3) reveal four distinct geographic clusters (Maghreb, Near and Middle East, West Europe, Central Europe). These biogeographic patterns suggest a model, where divergence of domesticated barley due to human activity interacted with introgression of individual chromosomes from wild barley, yielding adaptive diversity. These biogeographic patterns suggest a model in which the divergence of domesticated barley, driven by human activity, interacts with the introgression of chromosomes from wild barley, resulting in the creation of adaptive genetic diversity. Our research advances our knowledge of barley landraces' functional genomics and highlights their potential in molecular breeding, particularly for developing resilient varieties suited to diverse environmental conditions.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"46 12","pages":"14226-14243"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674917/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic Assessment and Positioning of Algerian Barley Landraces with Respect to Landraces from the Middle East and Europe Using RAPD and SSR Markers.\",\"authors\":\"Hamama Guetteche, Ali Jarrar, Sascha Wetters, Leila Rouabah, Abdelkader Rouabah, Abdelkader Benbelkacem, Ruzanna Sadoyan, Adnan Kanbar, Peter Nick\",\"doi\":\"10.3390/cimb46120852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Landraces are a critical genetic resource for resilience breeding, offering solutions to prepare agriculture for the challenges posed by climate change. Their efficient utilisation depends on understanding their history and genetic relationships. The current study investigates the phylogenetic relationships of barley landraces from Algeria, varieties from the Near and Middle East, traditional landraces, and modern cultivars from Europe. Using a core set of 33 varieties, including the wild ancestor <i>Hordeum spontaneum</i> from Armenia, genetic diversity was analysed with Random Amplified Polymorphic DNA (RAPD) and Simple Sequence Repeat (SSR) markers spanning all barley chromosomes. Based on the SSR-based phylogeny, the Algerian varieties are well clustered with those from the Near East, while distinct from the European varieties. The findings from RAPD markers partially support these results. Using exclusively traditional landraces, where a region of origin can be defined, the SSR markers are analysed separately for each chromosome individually, and the resulting clades are represented by the respective region of origin. This strategy resolves qualitative differences in geographic resolution, depending on the chromosome. While marker HvB23D (chromosome 4) separated the wild <i>H. spontaneum</i> from all domesticated genotypes, markers Bmag19 and Hv13GIII (chromosome 3) reveal four distinct geographic clusters (Maghreb, Near and Middle East, West Europe, Central Europe). These biogeographic patterns suggest a model, where divergence of domesticated barley due to human activity interacted with introgression of individual chromosomes from wild barley, yielding adaptive diversity. These biogeographic patterns suggest a model in which the divergence of domesticated barley, driven by human activity, interacts with the introgression of chromosomes from wild barley, resulting in the creation of adaptive genetic diversity. Our research advances our knowledge of barley landraces' functional genomics and highlights their potential in molecular breeding, particularly for developing resilient varieties suited to diverse environmental conditions.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":\"46 12\",\"pages\":\"14226-14243\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674917/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb46120852\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb46120852","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Genetic Assessment and Positioning of Algerian Barley Landraces with Respect to Landraces from the Middle East and Europe Using RAPD and SSR Markers.
Landraces are a critical genetic resource for resilience breeding, offering solutions to prepare agriculture for the challenges posed by climate change. Their efficient utilisation depends on understanding their history and genetic relationships. The current study investigates the phylogenetic relationships of barley landraces from Algeria, varieties from the Near and Middle East, traditional landraces, and modern cultivars from Europe. Using a core set of 33 varieties, including the wild ancestor Hordeum spontaneum from Armenia, genetic diversity was analysed with Random Amplified Polymorphic DNA (RAPD) and Simple Sequence Repeat (SSR) markers spanning all barley chromosomes. Based on the SSR-based phylogeny, the Algerian varieties are well clustered with those from the Near East, while distinct from the European varieties. The findings from RAPD markers partially support these results. Using exclusively traditional landraces, where a region of origin can be defined, the SSR markers are analysed separately for each chromosome individually, and the resulting clades are represented by the respective region of origin. This strategy resolves qualitative differences in geographic resolution, depending on the chromosome. While marker HvB23D (chromosome 4) separated the wild H. spontaneum from all domesticated genotypes, markers Bmag19 and Hv13GIII (chromosome 3) reveal four distinct geographic clusters (Maghreb, Near and Middle East, West Europe, Central Europe). These biogeographic patterns suggest a model, where divergence of domesticated barley due to human activity interacted with introgression of individual chromosomes from wild barley, yielding adaptive diversity. These biogeographic patterns suggest a model in which the divergence of domesticated barley, driven by human activity, interacts with the introgression of chromosomes from wild barley, resulting in the creation of adaptive genetic diversity. Our research advances our knowledge of barley landraces' functional genomics and highlights their potential in molecular breeding, particularly for developing resilient varieties suited to diverse environmental conditions.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.