吡虫啉FS制剂在中国花生栽培系统中的残留行为及其膳食和生态风险评价

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-12-26 DOI:10.1007/s10653-024-02340-5
Abdul Kaium, Wu Chi, Man Yanli, Liu Xingang, Dong Fengshou, Zheng Youngquan
{"title":"吡虫啉FS制剂在中国花生栽培系统中的残留行为及其膳食和生态风险评价","authors":"Abdul Kaium, Wu Chi, Man Yanli, Liu Xingang, Dong Fengshou, Zheng Youngquan","doi":"10.1007/s10653-024-02340-5","DOIUrl":null,"url":null,"abstract":"<p><p>Imidacloprid, a key neonicotinoid insecticide for pest control, is widely used in various crops, including peanuts. This study aimed to fill research gaps by analysing the residue behaviour of imidacloprid in peanut fields treated with flowable concentrate for seed treatment (FS) formulations while assessing potential risks to human health and ecosystems. A validated analytical method, using QuEChERS separation and UPLC-MS/MS detection, reliably quantified imidacloprid residues in peanuts and soil. Imidacloprid degradation followed a first-order kinetic model, with half-lives ranging from 21.0 to 46.2 days in plants and 10.3-30.1 days in soil. Residues in peanut kernels were below 0.05 mg/kg, and the maximum soil residue was 0.370 mg/kg. Dietary risk assessment indicated no health risks to adult consumers. However, ecological risk assessment predicted low to moderate earthworm toxicity and a medium risk from ecotoxicity exposure. These findings highlight the importance of adhering to recommended imidacloprid FS seed treatment dosages to minimise adverse effects on non-target soil organisms.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 2","pages":"35"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residue behavior of imidacloprid FS formulation in peanut cultivation system in china and its dietary and ecological risk assessment.\",\"authors\":\"Abdul Kaium, Wu Chi, Man Yanli, Liu Xingang, Dong Fengshou, Zheng Youngquan\",\"doi\":\"10.1007/s10653-024-02340-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Imidacloprid, a key neonicotinoid insecticide for pest control, is widely used in various crops, including peanuts. This study aimed to fill research gaps by analysing the residue behaviour of imidacloprid in peanut fields treated with flowable concentrate for seed treatment (FS) formulations while assessing potential risks to human health and ecosystems. A validated analytical method, using QuEChERS separation and UPLC-MS/MS detection, reliably quantified imidacloprid residues in peanuts and soil. Imidacloprid degradation followed a first-order kinetic model, with half-lives ranging from 21.0 to 46.2 days in plants and 10.3-30.1 days in soil. Residues in peanut kernels were below 0.05 mg/kg, and the maximum soil residue was 0.370 mg/kg. Dietary risk assessment indicated no health risks to adult consumers. However, ecological risk assessment predicted low to moderate earthworm toxicity and a medium risk from ecotoxicity exposure. These findings highlight the importance of adhering to recommended imidacloprid FS seed treatment dosages to minimise adverse effects on non-target soil organisms.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 2\",\"pages\":\"35\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02340-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02340-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

吡虫啉是一种重要的新烟碱类杀虫剂,广泛用于包括花生在内的多种作物。本研究旨在通过分析吡虫啉在使用可流动浓缩物进行种子处理(FS)配方的花生田中的残留行为,同时评估其对人类健康和生态系统的潜在风险,从而填补研究空白。采用QuEChERS分离和UPLC-MS/MS检测,建立了花生和土壤中吡虫啉残留量的定量分析方法。吡虫啉在植物中的半衰期为21.0 ~ 46.2 d,在土壤中的半衰期为10.3 ~ 30.1 d。花生籽粒中残留量均低于0.05 mg/kg,土壤中最大残留量为0.370 mg/kg。膳食风险评估表明对成年消费者没有健康风险。然而,生态风险评估预测低至中等蚯蚓毒性和中等生态毒性暴露风险。这些发现强调了坚持推荐的吡虫啉FS种子处理剂量以尽量减少对非目标土壤生物的不利影响的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Residue behavior of imidacloprid FS formulation in peanut cultivation system in china and its dietary and ecological risk assessment.

Imidacloprid, a key neonicotinoid insecticide for pest control, is widely used in various crops, including peanuts. This study aimed to fill research gaps by analysing the residue behaviour of imidacloprid in peanut fields treated with flowable concentrate for seed treatment (FS) formulations while assessing potential risks to human health and ecosystems. A validated analytical method, using QuEChERS separation and UPLC-MS/MS detection, reliably quantified imidacloprid residues in peanuts and soil. Imidacloprid degradation followed a first-order kinetic model, with half-lives ranging from 21.0 to 46.2 days in plants and 10.3-30.1 days in soil. Residues in peanut kernels were below 0.05 mg/kg, and the maximum soil residue was 0.370 mg/kg. Dietary risk assessment indicated no health risks to adult consumers. However, ecological risk assessment predicted low to moderate earthworm toxicity and a medium risk from ecotoxicity exposure. These findings highlight the importance of adhering to recommended imidacloprid FS seed treatment dosages to minimise adverse effects on non-target soil organisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Hydrogeochemical characterization of shallow and deep groundwater for drinking and irrigation water quality index of Kathmandu Valley, Nepal. The content and associated health risk assessment of toxic elements, micro-, and macrominerals in common carp, Wels catfish, and silver carp from the Danube River in Serbia. Fuzzy logic modelling of the pollution pattern of potentially toxic elements and naturally occurring radionuclide materials in quarry sites in Ogun State, Nigeria. Application of modified solidified soil in in-situ backfilling of coal gangue: evaluation of arsenic stabilization effect and mechanism study. Polychlorinated biphenyls induced toxicities upon cell lines and stem cells: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1