Ali Kassab, Dènahin H Toffa, Manon Robert, Michaël Chassé, Frédéric Lesage, Ke Peng, Dang K Nguyen
{"title":"危重病人癫痫持续状态的脑皮层血流动力学。","authors":"Ali Kassab, Dènahin H Toffa, Manon Robert, Michaël Chassé, Frédéric Lesage, Ke Peng, Dang K Nguyen","doi":"10.1111/epi.18224","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The pathophysiological mechanisms of status epilepticus (SE) underlying potential brain injury remain largely unclear. This study aims to employ functional near-infrared spectroscopy (fNIRS) combined with video-electroencephalography (vEEG) to monitor brain hemodynamics continuously and non-invasively in critically ill adult patients experiencing electrographic SE. Our primary focus is to investigate neurovascular coupling and cerebrovascular changes associated with seizures, particularly during recurring and/or prolonged episodes.</p><p><strong>Methods: </strong>Eleven critically ill adult patients underwent simultaneous vEEG-fNIRS with large cortical coverage. Data from seven patients with identified electrographic SE were analyzed. The timing of recorded seizures was marked using standardized critical care EEG terminology. A general linear model was employed to extract the hemodynamic response to seizures from the fNIRS recordings. Linear mixed-effects models were utilized to correlate hemodynamic responses with seizure characteristics.</p><p><strong>Results: </strong>A total of >200 h of monitoring and >1000 seizures were recorded. In most patients, an increase in oxyhemoglobin (HbO) and a decrease in deoxyhemoglobin (HbR) were observed during shorter-duration seizures. Although a similar response could also be seen initially for longer-duration seizures, this hemodynamic change was often followed by a progressive decline in HbO concentration and an increase in HbR. At the systemic level, no significant difference in peripheral oxygenation occurred during seizures, and only small changes in mean arterial blood pressure and heart rate occurred in four and two patients, respectively.</p><p><strong>Significance: </strong>We demonstrate the feasibility of using multichannel vEEG-fNIRS to measure the hemodynamic changes associated with electrographic seizures in critically ill adult patients. Our findings suggest that disrupted neurovascular coupling is more prevalent during prolonged seizures compared to recurrent short-duration seizures. This research provides valuable insights into the dynamic interplay between neuronal activity and hemodynamics during critical care seizures.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cortical hemodynamics of electrographic status epilepticus in the critically ill.\",\"authors\":\"Ali Kassab, Dènahin H Toffa, Manon Robert, Michaël Chassé, Frédéric Lesage, Ke Peng, Dang K Nguyen\",\"doi\":\"10.1111/epi.18224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The pathophysiological mechanisms of status epilepticus (SE) underlying potential brain injury remain largely unclear. This study aims to employ functional near-infrared spectroscopy (fNIRS) combined with video-electroencephalography (vEEG) to monitor brain hemodynamics continuously and non-invasively in critically ill adult patients experiencing electrographic SE. Our primary focus is to investigate neurovascular coupling and cerebrovascular changes associated with seizures, particularly during recurring and/or prolonged episodes.</p><p><strong>Methods: </strong>Eleven critically ill adult patients underwent simultaneous vEEG-fNIRS with large cortical coverage. Data from seven patients with identified electrographic SE were analyzed. The timing of recorded seizures was marked using standardized critical care EEG terminology. A general linear model was employed to extract the hemodynamic response to seizures from the fNIRS recordings. Linear mixed-effects models were utilized to correlate hemodynamic responses with seizure characteristics.</p><p><strong>Results: </strong>A total of >200 h of monitoring and >1000 seizures were recorded. In most patients, an increase in oxyhemoglobin (HbO) and a decrease in deoxyhemoglobin (HbR) were observed during shorter-duration seizures. Although a similar response could also be seen initially for longer-duration seizures, this hemodynamic change was often followed by a progressive decline in HbO concentration and an increase in HbR. At the systemic level, no significant difference in peripheral oxygenation occurred during seizures, and only small changes in mean arterial blood pressure and heart rate occurred in four and two patients, respectively.</p><p><strong>Significance: </strong>We demonstrate the feasibility of using multichannel vEEG-fNIRS to measure the hemodynamic changes associated with electrographic seizures in critically ill adult patients. Our findings suggest that disrupted neurovascular coupling is more prevalent during prolonged seizures compared to recurrent short-duration seizures. This research provides valuable insights into the dynamic interplay between neuronal activity and hemodynamics during critical care seizures.</p>\",\"PeriodicalId\":11768,\"journal\":{\"name\":\"Epilepsia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/epi.18224\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18224","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Cortical hemodynamics of electrographic status epilepticus in the critically ill.
Objectives: The pathophysiological mechanisms of status epilepticus (SE) underlying potential brain injury remain largely unclear. This study aims to employ functional near-infrared spectroscopy (fNIRS) combined with video-electroencephalography (vEEG) to monitor brain hemodynamics continuously and non-invasively in critically ill adult patients experiencing electrographic SE. Our primary focus is to investigate neurovascular coupling and cerebrovascular changes associated with seizures, particularly during recurring and/or prolonged episodes.
Methods: Eleven critically ill adult patients underwent simultaneous vEEG-fNIRS with large cortical coverage. Data from seven patients with identified electrographic SE were analyzed. The timing of recorded seizures was marked using standardized critical care EEG terminology. A general linear model was employed to extract the hemodynamic response to seizures from the fNIRS recordings. Linear mixed-effects models were utilized to correlate hemodynamic responses with seizure characteristics.
Results: A total of >200 h of monitoring and >1000 seizures were recorded. In most patients, an increase in oxyhemoglobin (HbO) and a decrease in deoxyhemoglobin (HbR) were observed during shorter-duration seizures. Although a similar response could also be seen initially for longer-duration seizures, this hemodynamic change was often followed by a progressive decline in HbO concentration and an increase in HbR. At the systemic level, no significant difference in peripheral oxygenation occurred during seizures, and only small changes in mean arterial blood pressure and heart rate occurred in four and two patients, respectively.
Significance: We demonstrate the feasibility of using multichannel vEEG-fNIRS to measure the hemodynamic changes associated with electrographic seizures in critically ill adult patients. Our findings suggest that disrupted neurovascular coupling is more prevalent during prolonged seizures compared to recurrent short-duration seizures. This research provides valuable insights into the dynamic interplay between neuronal activity and hemodynamics during critical care seizures.
期刊介绍:
Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.