代谢组学和转录组学分析揭示脉络膜新生血管的代谢-免疫相互作用。

IF 3 2区 医学 Q1 OPHTHALMOLOGY Experimental eye research Pub Date : 2024-12-26 DOI:10.1016/j.exer.2024.110227
Yihan Zhang, Siyi Qi, Weiai Shen, Ying Guo, Yu Liang, Qiao Zhuo, Hongyu Kong, Shujie Zhang, Chen Zhao
{"title":"代谢组学和转录组学分析揭示脉络膜新生血管的代谢-免疫相互作用。","authors":"Yihan Zhang, Siyi Qi, Weiai Shen, Ying Guo, Yu Liang, Qiao Zhuo, Hongyu Kong, Shujie Zhang, Chen Zhao","doi":"10.1016/j.exer.2024.110227","DOIUrl":null,"url":null,"abstract":"<p><p>Choroid neovascularization (CNV) is a distinct type of age-related macular degeneration (AMD) with a poor prognosis and responsible for the majority of vision loss in the elderly population. The laser-induced CNV model is a well-established animal model frequently used to study CNV. In this study, we performed an integrated analysis of metabolomic and transcriptomic data from CNV samples, utilizing multiple approaches including single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and weighted gene co-expression network analysis (WGCNA), alongside various bioinformatics platforms, to identify key metabolic and immune signatures and to investigate their interplay during angiogenesis. Dominant infiltration of macrophages and monocytes was detected and a positive correlation between dysregulated riboflavin metabolism and angiogenesis pathways was characterized. Hub genes such as ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) and acid phosphatase 5, tartrate resistant (ACP5) emerged as potential central regulators of immune-metabolic crosstalk in CNV. The classification of the immune and metabolic landscape and their critical interactions in CNV models will enhance the understanding of the pathogenesis of neovascular AMD and other neovascular eye diseases, contributing to the development of multi-targeted therapeutic strategies with better efficacy.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110227"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolomic and transcriptomic analysis reveals metabolic-immune interactions in choroid neovascularization.\",\"authors\":\"Yihan Zhang, Siyi Qi, Weiai Shen, Ying Guo, Yu Liang, Qiao Zhuo, Hongyu Kong, Shujie Zhang, Chen Zhao\",\"doi\":\"10.1016/j.exer.2024.110227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Choroid neovascularization (CNV) is a distinct type of age-related macular degeneration (AMD) with a poor prognosis and responsible for the majority of vision loss in the elderly population. The laser-induced CNV model is a well-established animal model frequently used to study CNV. In this study, we performed an integrated analysis of metabolomic and transcriptomic data from CNV samples, utilizing multiple approaches including single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and weighted gene co-expression network analysis (WGCNA), alongside various bioinformatics platforms, to identify key metabolic and immune signatures and to investigate their interplay during angiogenesis. Dominant infiltration of macrophages and monocytes was detected and a positive correlation between dysregulated riboflavin metabolism and angiogenesis pathways was characterized. Hub genes such as ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) and acid phosphatase 5, tartrate resistant (ACP5) emerged as potential central regulators of immune-metabolic crosstalk in CNV. The classification of the immune and metabolic landscape and their critical interactions in CNV models will enhance the understanding of the pathogenesis of neovascular AMD and other neovascular eye diseases, contributing to the development of multi-targeted therapeutic strategies with better efficacy.</p>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\" \",\"pages\":\"110227\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.exer.2024.110227\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2024.110227","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脉络膜新生血管(CNV)是一种独特类型的年龄相关性黄斑变性(AMD),预后差,是老年人视力丧失的主要原因。激光诱导CNV模型是研究CNV常用的一种成熟的动物模型。在这项研究中,我们对来自CNV样本的代谢组学和转录组学数据进行了综合分析,利用多种方法,包括单样本基因集富集分析(ssGSEA)、相关分析和加权基因共表达网络分析(WGCNA),以及各种生物信息学平台,确定关键的代谢和免疫特征,并研究它们在血管生成过程中的相互作用。巨噬细胞和单核细胞明显浸润,核黄素代谢失调与血管生成途径呈正相关。中心基因如外核苷酸焦磷酸酶/磷酸二酯酶1 (Enpp1)和酸性磷酸酶5,酒石酸盐抗性(ACP5)被认为是CNV免疫代谢串扰的潜在中心调控因子。在CNV模型中对免疫和代谢景观的分类及其关键相互作用将增强对新生血管性AMD和其他新生血管性眼病发病机制的理解,有助于开发疗效更好的多靶向治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolomic and transcriptomic analysis reveals metabolic-immune interactions in choroid neovascularization.

Choroid neovascularization (CNV) is a distinct type of age-related macular degeneration (AMD) with a poor prognosis and responsible for the majority of vision loss in the elderly population. The laser-induced CNV model is a well-established animal model frequently used to study CNV. In this study, we performed an integrated analysis of metabolomic and transcriptomic data from CNV samples, utilizing multiple approaches including single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and weighted gene co-expression network analysis (WGCNA), alongside various bioinformatics platforms, to identify key metabolic and immune signatures and to investigate their interplay during angiogenesis. Dominant infiltration of macrophages and monocytes was detected and a positive correlation between dysregulated riboflavin metabolism and angiogenesis pathways was characterized. Hub genes such as ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) and acid phosphatase 5, tartrate resistant (ACP5) emerged as potential central regulators of immune-metabolic crosstalk in CNV. The classification of the immune and metabolic landscape and their critical interactions in CNV models will enhance the understanding of the pathogenesis of neovascular AMD and other neovascular eye diseases, contributing to the development of multi-targeted therapeutic strategies with better efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental eye research
Experimental eye research 医学-眼科学
CiteScore
6.80
自引率
5.90%
发文量
323
审稿时长
66 days
期刊介绍: The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.
期刊最新文献
Establishment and evaluation of rabbit model for corneal ectasia by photorefractive keratectomy. Single-cell transcriptomic profiling of rat iridocorneal angle at perinatal stages: revisiting the development of periocular mesenchyme. Priming and release of cytokine IL-1β in microglial cells from the retina. Screening of a retinal-targeting Adeno-Associated Virus (AAV) via DNA shuffling. TAT-N24 enhances retinal ganglion cell survival by suppressing ZBP1-PANoptosome-mediated PANoptosis in an acute glaucoma mouse model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1