{"title":"含咪唑噻二唑类吡唑衍生物的合成及抗菌活性评价。","authors":"Lan-Ying Han, Jing-Xin Sun, Chuang Liu, Bing Ai, Ming-Guan Piao, Changhao Zhang, Ji-Shan Quan, Cheng-Hua Jin","doi":"10.1080/17568919.2024.2444868","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The purpose of this work was to investigate the antimicrobial activity of pyrazole derivatives (21a - i and 23a - o) synthesized.</p><p><strong>Materials & methods: </strong>The pyrazole derivatives were synthesized, molecular docked and tested for their antimicrobial activity, cytotoxicity, and hemolysis rate.</p><p><strong>Results: </strong>Most of the target compounds showed high selective inhibitory activity against multi-drug resistance compared with other strains. Of these, compounds 21c (MIC = 0.25 µg/mL) and 23 h (MIC = 0.25 µg/mL) showed the strongest antibacterial activity, which was 4-flods than that of the positive control compound gatifloxacin (MIC = 1 µg/mL). Furthermore, compound 23 h showed no cytotoxicity to human LO2 cells, and did not show hemolysis even at ultra-high concentration.</p><p><strong>Conclusion: </strong>These results prompted that these compounds are valuable for further development as antimicrobial agents.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"157-170"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749441/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis and antimicrobial activity evaluation of pyrazole derivatives containing imidazothiadiazole moiety.\",\"authors\":\"Lan-Ying Han, Jing-Xin Sun, Chuang Liu, Bing Ai, Ming-Guan Piao, Changhao Zhang, Ji-Shan Quan, Cheng-Hua Jin\",\"doi\":\"10.1080/17568919.2024.2444868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>The purpose of this work was to investigate the antimicrobial activity of pyrazole derivatives (21a - i and 23a - o) synthesized.</p><p><strong>Materials & methods: </strong>The pyrazole derivatives were synthesized, molecular docked and tested for their antimicrobial activity, cytotoxicity, and hemolysis rate.</p><p><strong>Results: </strong>Most of the target compounds showed high selective inhibitory activity against multi-drug resistance compared with other strains. Of these, compounds 21c (MIC = 0.25 µg/mL) and 23 h (MIC = 0.25 µg/mL) showed the strongest antibacterial activity, which was 4-flods than that of the positive control compound gatifloxacin (MIC = 1 µg/mL). Furthermore, compound 23 h showed no cytotoxicity to human LO2 cells, and did not show hemolysis even at ultra-high concentration.</p><p><strong>Conclusion: </strong>These results prompted that these compounds are valuable for further development as antimicrobial agents.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"157-170\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749441/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2444868\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2444868","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Synthesis and antimicrobial activity evaluation of pyrazole derivatives containing imidazothiadiazole moiety.
Aim: The purpose of this work was to investigate the antimicrobial activity of pyrazole derivatives (21a - i and 23a - o) synthesized.
Materials & methods: The pyrazole derivatives were synthesized, molecular docked and tested for their antimicrobial activity, cytotoxicity, and hemolysis rate.
Results: Most of the target compounds showed high selective inhibitory activity against multi-drug resistance compared with other strains. Of these, compounds 21c (MIC = 0.25 µg/mL) and 23 h (MIC = 0.25 µg/mL) showed the strongest antibacterial activity, which was 4-flods than that of the positive control compound gatifloxacin (MIC = 1 µg/mL). Furthermore, compound 23 h showed no cytotoxicity to human LO2 cells, and did not show hemolysis even at ultra-high concentration.
Conclusion: These results prompted that these compounds are valuable for further development as antimicrobial agents.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.