在伤口感染模型中,土壤中的黏菌可以大大减少细菌负荷。

IF 3.2 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Applied Microbiology Pub Date : 2025-01-06 DOI:10.1093/jambio/lxae315
Benita S Arakal, Richard S Rowlands, Sarah E Maddocks, David E Whitworth, Philip E James, Paul G Livingstone
{"title":"在伤口感染模型中,土壤中的黏菌可以大大减少细菌负荷。","authors":"Benita S Arakal, Richard S Rowlands, Sarah E Maddocks, David E Whitworth, Philip E James, Paul G Livingstone","doi":"10.1093/jambio/lxae315","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Myxobacteria are non-pathogenic, saprophytic, soil-dwelling predatory bacteria known for their antimicrobial potential. Many pathogenic bacteria form biofilms to protect themselves from antimicrobial agents and the immune system. This study has investigated the predatory activities of myxobacteria against pathogenic bacteria in biofilms.</p><p><strong>Methods and results: </strong>A total of 50 soil samples were collected in and around Cardiff, South Wales (UK). Using a baiting method with 6 prey organisms, 32 myxobacteria were isolated and identified by 16S rRNA sequencing, of which 18 were Myxococcus spp. and 14 were Corallococcus spp. Predation assays, biofilm inhibition and disruption assays, and a dynamic, polymicrobial wound biofilm model were used with live myxobacteria to assess efficacy of predation. Good activity in predation assays was observed against Escherichia coli, while Enterococcus faecalis was more recalcitrant to myxobacteria. Staphylococcus aureus and Citrobacter freundii were significantly (P < 0.05) reduced in both biofilm inhibition and disruption assays compared to other pathogens. Considerable reductions (>3 log10 CFU) in the wound infection model were seen after 96 h of incubation, particularly for C. freundii and E. coli.</p><p><strong>Conclusion: </strong>Using live predatory bacteria as an alternative therapeutic agent has received attention in the recent past to combat the problem of antimicrobial resistance. Myxobacteria isolated from soil using multiple prey organisms yielded diverse isolates, including strains which exhibited therapeutically promising activities in a variety of infection/biofilm assays.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myxobacteria from soil can substantially reduce the bacterial load in a wound infection model.\",\"authors\":\"Benita S Arakal, Richard S Rowlands, Sarah E Maddocks, David E Whitworth, Philip E James, Paul G Livingstone\",\"doi\":\"10.1093/jambio/lxae315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Myxobacteria are non-pathogenic, saprophytic, soil-dwelling predatory bacteria known for their antimicrobial potential. Many pathogenic bacteria form biofilms to protect themselves from antimicrobial agents and the immune system. This study has investigated the predatory activities of myxobacteria against pathogenic bacteria in biofilms.</p><p><strong>Methods and results: </strong>A total of 50 soil samples were collected in and around Cardiff, South Wales (UK). Using a baiting method with 6 prey organisms, 32 myxobacteria were isolated and identified by 16S rRNA sequencing, of which 18 were Myxococcus spp. and 14 were Corallococcus spp. Predation assays, biofilm inhibition and disruption assays, and a dynamic, polymicrobial wound biofilm model were used with live myxobacteria to assess efficacy of predation. Good activity in predation assays was observed against Escherichia coli, while Enterococcus faecalis was more recalcitrant to myxobacteria. Staphylococcus aureus and Citrobacter freundii were significantly (P < 0.05) reduced in both biofilm inhibition and disruption assays compared to other pathogens. Considerable reductions (>3 log10 CFU) in the wound infection model were seen after 96 h of incubation, particularly for C. freundii and E. coli.</p><p><strong>Conclusion: </strong>Using live predatory bacteria as an alternative therapeutic agent has received attention in the recent past to combat the problem of antimicrobial resistance. Myxobacteria isolated from soil using multiple prey organisms yielded diverse isolates, including strains which exhibited therapeutically promising activities in a variety of infection/biofilm assays.</p>\",\"PeriodicalId\":15036,\"journal\":{\"name\":\"Journal of Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jambio/lxae315\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae315","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:黏菌是一种非致病性、腐生性、居住在土壤中的掠食性细菌,以其抗菌潜力而闻名。许多致病菌形成生物膜来保护自己免受抗菌剂和免疫系统的侵害。本研究研究了黏菌对生物膜中致病菌的捕食活性。方法和结果:在英国南威尔士卡迪夫及其周边地区收集了50份土壤样本。采用6种被捕食生物为诱饵的方法,分离出32株粘菌,并通过16S rRNA测序鉴定,其中粘球菌18株,珊瑚球菌14株,采用捕食实验、生物膜抑制和破坏实验以及动态多微生物伤口生物膜模型对活菌进行捕食效果评价。在对大肠杆菌的捕食试验中观察到良好的活性,而粪肠杆菌对黏菌的抗性较强。孵育96小时后,伤口感染模型中金黄色葡萄球菌和弗氏胞杆菌的感染率显著(p 3 log10 CFU),弗氏胞杆菌和大肠杆菌的感染率尤为显著。结论:利用活的捕食性细菌作为替代治疗药物来对抗抗生素耐药性问题已引起人们的关注。利用多种猎物生物从土壤中分离出的粘杆菌产生了不同的分离株,包括在各种感染/生物膜试验中显示出治疗前景的菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Myxobacteria from soil can substantially reduce the bacterial load in a wound infection model.

Aims: Myxobacteria are non-pathogenic, saprophytic, soil-dwelling predatory bacteria known for their antimicrobial potential. Many pathogenic bacteria form biofilms to protect themselves from antimicrobial agents and the immune system. This study has investigated the predatory activities of myxobacteria against pathogenic bacteria in biofilms.

Methods and results: A total of 50 soil samples were collected in and around Cardiff, South Wales (UK). Using a baiting method with 6 prey organisms, 32 myxobacteria were isolated and identified by 16S rRNA sequencing, of which 18 were Myxococcus spp. and 14 were Corallococcus spp. Predation assays, biofilm inhibition and disruption assays, and a dynamic, polymicrobial wound biofilm model were used with live myxobacteria to assess efficacy of predation. Good activity in predation assays was observed against Escherichia coli, while Enterococcus faecalis was more recalcitrant to myxobacteria. Staphylococcus aureus and Citrobacter freundii were significantly (P < 0.05) reduced in both biofilm inhibition and disruption assays compared to other pathogens. Considerable reductions (>3 log10 CFU) in the wound infection model were seen after 96 h of incubation, particularly for C. freundii and E. coli.

Conclusion: Using live predatory bacteria as an alternative therapeutic agent has received attention in the recent past to combat the problem of antimicrobial resistance. Myxobacteria isolated from soil using multiple prey organisms yielded diverse isolates, including strains which exhibited therapeutically promising activities in a variety of infection/biofilm assays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Microbiology
Journal of Applied Microbiology 生物-生物工程与应用微生物
CiteScore
7.30
自引率
2.50%
发文量
427
审稿时长
2.7 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
期刊最新文献
Using bacterial and mitochondrial DNA markers to assess fecal pollution sources in stream water and sediments of a mixed land-use watershed. Prevalence of antimicrobial resistance phenotypes and genes in stable fly- and manure-derived bacterial isolates from clinically relevant taxa in dairy settings. Humic substances modulate bacterial communities and mitigate adverse effects of temperature stress in coral reef organisms. Sulfate-reducing bacteria block cadmium and lead uptake in rice by regulating sulfur metabolism. Evaluation of the recovery effects of antibiotic-resistant lactiplantibacillus plantarum subsp. Plantarum ATCC14917 on the antibiotic-disturbed intestinal microbiota using a mice model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1