任意氧化还原状态下岩浆海洋演化。

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysical Research: Planets Pub Date : 2024-12-01 Epub Date: 2024-12-23 DOI:10.1029/2024JE008576
Harrison Nicholls, Tim Lichtenberg, Dan J Bower, Raymond Pierrehumbert
{"title":"任意氧化还原状态下岩浆海洋演化。","authors":"Harrison Nicholls, Tim Lichtenberg, Dan J Bower, Raymond Pierrehumbert","doi":"10.1029/2024JE008576","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between magma oceans and overlying atmospheres on young rocky planets leads to an evolving feedback of outgassing, greenhouse forcing, and mantle melt fraction. Previous studies have predominantly focused on the solidification of oxidized Earth-similar planets, but the diversity in mean density and irradiation observed in the low-mass exoplanet census motivate exploration of strongly varying geochemical scenarios. We aim to explore how variable redox properties alter the duration of magma ocean solidification, the equilibrium thermodynamic state, melt fraction of the mantle, and atmospheric composition. We develop a 1D coupled interior-atmosphere model that can simulate the time-evolution of lava planets. This is applied across a grid of fixed redox states, orbital separations, hydrogen endowments, and C/H ratios around a Sun-like star. The composition of these atmospheres is highly variable before and during solidification. The evolutionary path of an Earth-like planet at 1 AU ranges between permanent magma ocean states and solidification within 1 Myr. Recently solidified planets typically host <math> <mrow> <mrow><msub><mi>H</mi> <mn>2</mn></msub> <mi>O</mi></mrow> </mrow> </math> - or <math> <mrow> <mrow><msub><mi>H</mi> <mn>2</mn></msub> </mrow> </mrow> </math> -dominated atmospheres in the absence of escape. Orbital separation is the primary factor determining magma ocean evolution, followed by the total hydrogen endowment, mantle oxygen fugacity, and finally the planet's C/H ratio. Collisional absorption by <math> <mrow> <mrow><msub><mi>H</mi> <mn>2</mn></msub> </mrow> </mrow> </math> induces a greenhouse effect which can prevent or stall magma ocean solidification. Through this effect, as well as the outgassing of other volatiles, geochemical properties exert significant control over the fate of magma oceans on rocky planets.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 12","pages":"e2024JE008576"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667094/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magma Ocean Evolution at Arbitrary Redox State.\",\"authors\":\"Harrison Nicholls, Tim Lichtenberg, Dan J Bower, Raymond Pierrehumbert\",\"doi\":\"10.1029/2024JE008576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interactions between magma oceans and overlying atmospheres on young rocky planets leads to an evolving feedback of outgassing, greenhouse forcing, and mantle melt fraction. Previous studies have predominantly focused on the solidification of oxidized Earth-similar planets, but the diversity in mean density and irradiation observed in the low-mass exoplanet census motivate exploration of strongly varying geochemical scenarios. We aim to explore how variable redox properties alter the duration of magma ocean solidification, the equilibrium thermodynamic state, melt fraction of the mantle, and atmospheric composition. We develop a 1D coupled interior-atmosphere model that can simulate the time-evolution of lava planets. This is applied across a grid of fixed redox states, orbital separations, hydrogen endowments, and C/H ratios around a Sun-like star. The composition of these atmospheres is highly variable before and during solidification. The evolutionary path of an Earth-like planet at 1 AU ranges between permanent magma ocean states and solidification within 1 Myr. Recently solidified planets typically host <math> <mrow> <mrow><msub><mi>H</mi> <mn>2</mn></msub> <mi>O</mi></mrow> </mrow> </math> - or <math> <mrow> <mrow><msub><mi>H</mi> <mn>2</mn></msub> </mrow> </mrow> </math> -dominated atmospheres in the absence of escape. Orbital separation is the primary factor determining magma ocean evolution, followed by the total hydrogen endowment, mantle oxygen fugacity, and finally the planet's C/H ratio. Collisional absorption by <math> <mrow> <mrow><msub><mi>H</mi> <mn>2</mn></msub> </mrow> </mrow> </math> induces a greenhouse effect which can prevent or stall magma ocean solidification. Through this effect, as well as the outgassing of other volatiles, geochemical properties exert significant control over the fate of magma oceans on rocky planets.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 12\",\"pages\":\"e2024JE008576\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667094/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024JE008576\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024JE008576","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在年轻的岩石行星上,岩浆海洋与上覆大气之间的相互作用导致了气体释放、温室效应和地幔熔融分数的不断演变的反馈。以前的研究主要集中在氧化的类似地球的行星的凝固上,但是在低质量系外行星普查中观测到的平均密度和辐射的多样性激发了对强烈变化的地球化学情景的探索。我们的目的是探索不同的氧化还原性质如何改变岩浆海洋凝固的持续时间、平衡热力学状态、地幔的熔融分数和大气成分。我们建立了一个一维耦合的内部大气模型,可以模拟熔岩行星的时间演化。这适用于固定的氧化还原态、轨道分离、氢禀赋和类太阳恒星周围的C/H比的网格。这些大气的组成在凝固前和凝固过程中变化很大。1 AU的类地行星的演化路径介于永久岩浆海洋状态和1 Myr的凝固状态之间。在没有逃逸的情况下,最近凝固的行星通常拥有以h2o或h2为主的大气层。轨道分离是决定岩浆海洋演化的主要因素,其次是总氢禀赋、地幔氧逸度,最后是行星的C/H比。h2的碰撞吸收引起温室效应,可以阻止或延缓岩浆海洋的凝固。通过这种效应,以及其他挥发物的释放,地球化学特性对岩石行星上岩浆海洋的命运施加了重大控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magma Ocean Evolution at Arbitrary Redox State.

Interactions between magma oceans and overlying atmospheres on young rocky planets leads to an evolving feedback of outgassing, greenhouse forcing, and mantle melt fraction. Previous studies have predominantly focused on the solidification of oxidized Earth-similar planets, but the diversity in mean density and irradiation observed in the low-mass exoplanet census motivate exploration of strongly varying geochemical scenarios. We aim to explore how variable redox properties alter the duration of magma ocean solidification, the equilibrium thermodynamic state, melt fraction of the mantle, and atmospheric composition. We develop a 1D coupled interior-atmosphere model that can simulate the time-evolution of lava planets. This is applied across a grid of fixed redox states, orbital separations, hydrogen endowments, and C/H ratios around a Sun-like star. The composition of these atmospheres is highly variable before and during solidification. The evolutionary path of an Earth-like planet at 1 AU ranges between permanent magma ocean states and solidification within 1 Myr. Recently solidified planets typically host H 2 O - or H 2 -dominated atmospheres in the absence of escape. Orbital separation is the primary factor determining magma ocean evolution, followed by the total hydrogen endowment, mantle oxygen fugacity, and finally the planet's C/H ratio. Collisional absorption by H 2 induces a greenhouse effect which can prevent or stall magma ocean solidification. Through this effect, as well as the outgassing of other volatiles, geochemical properties exert significant control over the fate of magma oceans on rocky planets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
期刊最新文献
Tadpole-Shaped Nanoparticles in Impact Melt and Implication of High Temperature Chemical Garden in Lunar Soil Magmatic Evolution of the Marius Hills, Rümker Hills, and Gardner Volcanic Complexes on the Moon: Constraints From Topography and Gravity Mapping of Western Valles Marineris Light-Toned Layered Deposits and Newly Classified Rim Deposits Extensive Secondary Cratering From the InSight Sol 1034a Impact Event Characterizing the Modulation and Activation-Triggering Mechanisms of Main-Belt Comets via 3D Thermophysical Modeling of an Ellipsoidal Body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1