{"title":"LncRNA MALAT1作为肾脏疾病的潜在诊断和治疗靶点。","authors":"Bhupendra Puri, Syamantak Majumder, Anil Bhanudas Gaikwad","doi":"10.1016/j.prp.2024.155783","DOIUrl":null,"url":null,"abstract":"<p><p>Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has emerged as a crucial biomarker and therapeutic target for kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and renal cell carcinoma (RCC). LncRNAs are non-coding RNAs that have more than 200 nucleotides that play a crucial role in gene regulation at the post-translational stage, transcriptional, and epigenetic levels. LncRNA MALAT1 regulates gene expression and modulates cellular functions such as proliferation, inflammation, apoptosis, and fibrosis, which are key pathophysiology of kidney diseases. Overexpression of lncRNA MALAT1 has been consistently observed in kidney tissue, correlating with the severity and progression of kidney disease. In AKI, lncRNA MALAT1 exacerbates inflammation and tissue damage, contributing to disease progression. In CKD and DKD, lncRNA MALAT1 is implicated in the regulation of fibrosis by modulating key pathways, including focal adhesion kinase (FAK), toll-like receptor 4 (TLR4), NOD-like receptor protein3 (NLRP3), and nuclear factor kappa B (NF-κB), play pivotal roles in promoting disease progression. In LN, lncRNA MALAT1 has been linked to immune regulation and kidney damage, while in RCC, its role in promoting tumor growth and metastasis has been well documented. Preclinical research has demonstrated that therapeutic strategies targeting lncRNA MALAT1, such as knockdown and knockout, can reduce inflammation and fibrosis while improving kidney function. The fundamental role of lncRNA MALAT1 in kidney disease progression is yet to be fully understood. However, lncRNA MALAT1 has shown promise as a biomarker and therapeutic target to mitigate kidney disease development. This review highlights the potential of lncRNAs MALAT1 as diagnostic biomarkers and therapeutic targets, offering insights into a comprehensive approach to managing kidney diseases in the future.</p>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"266 ","pages":"155783"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA MALAT1 as a potential diagnostic and therapeutic target in kidney diseases.\",\"authors\":\"Bhupendra Puri, Syamantak Majumder, Anil Bhanudas Gaikwad\",\"doi\":\"10.1016/j.prp.2024.155783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has emerged as a crucial biomarker and therapeutic target for kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and renal cell carcinoma (RCC). LncRNAs are non-coding RNAs that have more than 200 nucleotides that play a crucial role in gene regulation at the post-translational stage, transcriptional, and epigenetic levels. LncRNA MALAT1 regulates gene expression and modulates cellular functions such as proliferation, inflammation, apoptosis, and fibrosis, which are key pathophysiology of kidney diseases. Overexpression of lncRNA MALAT1 has been consistently observed in kidney tissue, correlating with the severity and progression of kidney disease. In AKI, lncRNA MALAT1 exacerbates inflammation and tissue damage, contributing to disease progression. In CKD and DKD, lncRNA MALAT1 is implicated in the regulation of fibrosis by modulating key pathways, including focal adhesion kinase (FAK), toll-like receptor 4 (TLR4), NOD-like receptor protein3 (NLRP3), and nuclear factor kappa B (NF-κB), play pivotal roles in promoting disease progression. In LN, lncRNA MALAT1 has been linked to immune regulation and kidney damage, while in RCC, its role in promoting tumor growth and metastasis has been well documented. Preclinical research has demonstrated that therapeutic strategies targeting lncRNA MALAT1, such as knockdown and knockout, can reduce inflammation and fibrosis while improving kidney function. The fundamental role of lncRNA MALAT1 in kidney disease progression is yet to be fully understood. However, lncRNA MALAT1 has shown promise as a biomarker and therapeutic target to mitigate kidney disease development. This review highlights the potential of lncRNAs MALAT1 as diagnostic biomarkers and therapeutic targets, offering insights into a comprehensive approach to managing kidney diseases in the future.</p>\",\"PeriodicalId\":19916,\"journal\":{\"name\":\"Pathology, research and practice\",\"volume\":\"266 \",\"pages\":\"155783\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology, research and practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.prp.2024.155783\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.prp.2024.155783","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
LncRNA MALAT1 as a potential diagnostic and therapeutic target in kidney diseases.
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has emerged as a crucial biomarker and therapeutic target for kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and renal cell carcinoma (RCC). LncRNAs are non-coding RNAs that have more than 200 nucleotides that play a crucial role in gene regulation at the post-translational stage, transcriptional, and epigenetic levels. LncRNA MALAT1 regulates gene expression and modulates cellular functions such as proliferation, inflammation, apoptosis, and fibrosis, which are key pathophysiology of kidney diseases. Overexpression of lncRNA MALAT1 has been consistently observed in kidney tissue, correlating with the severity and progression of kidney disease. In AKI, lncRNA MALAT1 exacerbates inflammation and tissue damage, contributing to disease progression. In CKD and DKD, lncRNA MALAT1 is implicated in the regulation of fibrosis by modulating key pathways, including focal adhesion kinase (FAK), toll-like receptor 4 (TLR4), NOD-like receptor protein3 (NLRP3), and nuclear factor kappa B (NF-κB), play pivotal roles in promoting disease progression. In LN, lncRNA MALAT1 has been linked to immune regulation and kidney damage, while in RCC, its role in promoting tumor growth and metastasis has been well documented. Preclinical research has demonstrated that therapeutic strategies targeting lncRNA MALAT1, such as knockdown and knockout, can reduce inflammation and fibrosis while improving kidney function. The fundamental role of lncRNA MALAT1 in kidney disease progression is yet to be fully understood. However, lncRNA MALAT1 has shown promise as a biomarker and therapeutic target to mitigate kidney disease development. This review highlights the potential of lncRNAs MALAT1 as diagnostic biomarkers and therapeutic targets, offering insights into a comprehensive approach to managing kidney diseases in the future.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.