Yanli Du , Kun Wang , Xiannian Zi , Xiao Wang , Meiquan Li , Bo Zhang , Jinshan Ran , Wei Huang , Jing Wang , Cuilian Dong , Hanyi Xiang , Li Lei , Changrong Ge , Yong Liu
{"title":"鸡T淋巴细胞CD8A基因稳定敲除和过表达的转录组和代谢组分析。","authors":"Yanli Du , Kun Wang , Xiannian Zi , Xiao Wang , Meiquan Li , Bo Zhang , Jinshan Ran , Wei Huang , Jing Wang , Cuilian Dong , Hanyi Xiang , Li Lei , Changrong Ge , Yong Liu","doi":"10.1016/j.psj.2024.104686","DOIUrl":null,"url":null,"abstract":"<div><div>CD8 subunit alpha (<strong>CD8A</strong>) is an important gene in immunity and is involved in the functional regulation of T lymphocytes. However, the specific role and regulatory mechanism of CD8A in chicken T lymphocytes remain unknown. In this study, we overexpressed and interfered with CD8A in chicken T lymphocytes and found that interfering with CD8A expression inhibited the proliferation and induced the apoptosis of T lymphocytes and that the overexpression of CD8A promoted T lymphocyte activation. Additionally, transcriptomic and metabolomic analyses of chicken T lymphocytes with CD8A overexpression or interference were performed. The overexpression and interference of the CD8A gene caused widespread changes in gene and metabolite expression in chicken T cells. The results of the transcriptome analysis revealed that differentially expressed genes (<strong>DEGs</strong>) caused by altered expression of the CD8A gene were associated with multiple “neuroactive ligand-receptor interaction”, “cell adhesion molecules”, “calcium signaling pathway”, etc. The metabolome analysis results revealed that different metabolites (<strong>DMs</strong>) caused by altered CD8A gene expression were associated with “Glutathione metabolism”, “Arginine biosynthesis”, “D-amino acid metabolism”, etc. The combined transcriptional and metabolic analysis revealed one metabolically related pathway, “Glutathione metabolism”. Our findings further revealed that interference and overexpression of CD8A plays a role in the metabolism of Glutathione. Thus, CD8A may be a critical regulator of “Glutathione metabolism” and may subsequently affect T-cell function in chickens. These results provide an important reference for further research on the effect of CD8A on the immune performance of chickens.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 2","pages":"Article 104686"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748709/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combined transcriptome and metabolome analysis of stable knockdown and overexpression of the CD8A gene in chicken T lymphocytes\",\"authors\":\"Yanli Du , Kun Wang , Xiannian Zi , Xiao Wang , Meiquan Li , Bo Zhang , Jinshan Ran , Wei Huang , Jing Wang , Cuilian Dong , Hanyi Xiang , Li Lei , Changrong Ge , Yong Liu\",\"doi\":\"10.1016/j.psj.2024.104686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CD8 subunit alpha (<strong>CD8A</strong>) is an important gene in immunity and is involved in the functional regulation of T lymphocytes. However, the specific role and regulatory mechanism of CD8A in chicken T lymphocytes remain unknown. In this study, we overexpressed and interfered with CD8A in chicken T lymphocytes and found that interfering with CD8A expression inhibited the proliferation and induced the apoptosis of T lymphocytes and that the overexpression of CD8A promoted T lymphocyte activation. Additionally, transcriptomic and metabolomic analyses of chicken T lymphocytes with CD8A overexpression or interference were performed. The overexpression and interference of the CD8A gene caused widespread changes in gene and metabolite expression in chicken T cells. The results of the transcriptome analysis revealed that differentially expressed genes (<strong>DEGs</strong>) caused by altered expression of the CD8A gene were associated with multiple “neuroactive ligand-receptor interaction”, “cell adhesion molecules”, “calcium signaling pathway”, etc. The metabolome analysis results revealed that different metabolites (<strong>DMs</strong>) caused by altered CD8A gene expression were associated with “Glutathione metabolism”, “Arginine biosynthesis”, “D-amino acid metabolism”, etc. The combined transcriptional and metabolic analysis revealed one metabolically related pathway, “Glutathione metabolism”. Our findings further revealed that interference and overexpression of CD8A plays a role in the metabolism of Glutathione. Thus, CD8A may be a critical regulator of “Glutathione metabolism” and may subsequently affect T-cell function in chickens. These results provide an important reference for further research on the effect of CD8A on the immune performance of chickens.</div></div>\",\"PeriodicalId\":20459,\"journal\":{\"name\":\"Poultry Science\",\"volume\":\"104 2\",\"pages\":\"Article 104686\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748709/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032579124012641\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579124012641","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Combined transcriptome and metabolome analysis of stable knockdown and overexpression of the CD8A gene in chicken T lymphocytes
CD8 subunit alpha (CD8A) is an important gene in immunity and is involved in the functional regulation of T lymphocytes. However, the specific role and regulatory mechanism of CD8A in chicken T lymphocytes remain unknown. In this study, we overexpressed and interfered with CD8A in chicken T lymphocytes and found that interfering with CD8A expression inhibited the proliferation and induced the apoptosis of T lymphocytes and that the overexpression of CD8A promoted T lymphocyte activation. Additionally, transcriptomic and metabolomic analyses of chicken T lymphocytes with CD8A overexpression or interference were performed. The overexpression and interference of the CD8A gene caused widespread changes in gene and metabolite expression in chicken T cells. The results of the transcriptome analysis revealed that differentially expressed genes (DEGs) caused by altered expression of the CD8A gene were associated with multiple “neuroactive ligand-receptor interaction”, “cell adhesion molecules”, “calcium signaling pathway”, etc. The metabolome analysis results revealed that different metabolites (DMs) caused by altered CD8A gene expression were associated with “Glutathione metabolism”, “Arginine biosynthesis”, “D-amino acid metabolism”, etc. The combined transcriptional and metabolic analysis revealed one metabolically related pathway, “Glutathione metabolism”. Our findings further revealed that interference and overexpression of CD8A plays a role in the metabolism of Glutathione. Thus, CD8A may be a critical regulator of “Glutathione metabolism” and may subsequently affect T-cell function in chickens. These results provide an important reference for further research on the effect of CD8A on the immune performance of chickens.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.