重组Jararhagin-C双链载体的表达及其对内皮细胞的影响。

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY Toxins Pub Date : 2024-12-03 DOI:10.3390/toxins16120524
Karla Fernanda Ferraz, Lhiri Hanna De Lucca Caetano, Daniele Pereira Orefice, Paula Andreia Lucas Calabria, Maisa Splendore Della-Casa, Luciana Aparecida Freitas-de-Sousa, Emidio Beraldo-Neto, Sabri Saeed Sanabani, Geraldo Santana Magalhães, Patricia Bianca Clissa
{"title":"重组Jararhagin-C双链载体的表达及其对内皮细胞的影响。","authors":"Karla Fernanda Ferraz, Lhiri Hanna De Lucca Caetano, Daniele Pereira Orefice, Paula Andreia Lucas Calabria, Maisa Splendore Della-Casa, Luciana Aparecida Freitas-de-Sousa, Emidio Beraldo-Neto, Sabri Saeed Sanabani, Geraldo Santana Magalhães, Patricia Bianca Clissa","doi":"10.3390/toxins16120524","DOIUrl":null,"url":null,"abstract":"<p><p>Jararhagin-C (JarC) is a protein from the venom of <i>Bothrops jararaca</i> consisting of disintegrin-like and cysteine-rich domains. JarC shows a modulating effect on angiogenesis and remodeling of extracellular matrix constituents, improving wound healing in a mouse experimental model. JarC is purified from crude venom, and the yield is less than 1%. The aim of this work was to obtain the recombinant form of JarC and to test its biological activity. For this purpose, the bicistronic vector pSUMOUlp1 was used. This vector allowed the expression of the recombinant toxin JarC (rJarC) in fusion with the small ubiquitin-related modifier (SUMO) as well as the SUMO protease Ulp1. After expression, this protease was able to efficiently remove SUMO from rJarC inside the bacteria. rJarC free from SUMO was purified at the expected molecular mass and recognized by polyclonal anti-jararhagin antibodies. In terms of biological activity, both the native and recombinant forms showed no toxicity to the HUVEC cell line CRL1730 and were effective in modulating cell migration activity in the experimental in vitro model. These results demonstrate the successful production of rJarC and the preservation of its biological activity, which may facilitate further investigations into the therapeutic potential of this snake venom-derived protein.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"16 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bicistronic Vector Expression of Recombinant Jararhagin-C and Its Effects on Endothelial Cells.\",\"authors\":\"Karla Fernanda Ferraz, Lhiri Hanna De Lucca Caetano, Daniele Pereira Orefice, Paula Andreia Lucas Calabria, Maisa Splendore Della-Casa, Luciana Aparecida Freitas-de-Sousa, Emidio Beraldo-Neto, Sabri Saeed Sanabani, Geraldo Santana Magalhães, Patricia Bianca Clissa\",\"doi\":\"10.3390/toxins16120524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Jararhagin-C (JarC) is a protein from the venom of <i>Bothrops jararaca</i> consisting of disintegrin-like and cysteine-rich domains. JarC shows a modulating effect on angiogenesis and remodeling of extracellular matrix constituents, improving wound healing in a mouse experimental model. JarC is purified from crude venom, and the yield is less than 1%. The aim of this work was to obtain the recombinant form of JarC and to test its biological activity. For this purpose, the bicistronic vector pSUMOUlp1 was used. This vector allowed the expression of the recombinant toxin JarC (rJarC) in fusion with the small ubiquitin-related modifier (SUMO) as well as the SUMO protease Ulp1. After expression, this protease was able to efficiently remove SUMO from rJarC inside the bacteria. rJarC free from SUMO was purified at the expected molecular mass and recognized by polyclonal anti-jararhagin antibodies. In terms of biological activity, both the native and recombinant forms showed no toxicity to the HUVEC cell line CRL1730 and were effective in modulating cell migration activity in the experimental in vitro model. These results demonstrate the successful production of rJarC and the preservation of its biological activity, which may facilitate further investigations into the therapeutic potential of this snake venom-derived protein.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"16 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins16120524\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins16120524","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

jararhain - c (JarC)是一种来自jararaca Bothrops毒液的蛋白质,由崩解素样结构域和富含半胱氨酸的结构域组成。在小鼠实验模型中,JarC显示出对血管生成和细胞外基质成分重塑的调节作用,促进伤口愈合。JarC是从粗毒液中纯化出来的,产率小于1%。本工作的目的是获得JarC的重组形式,并测试其生物活性。为此,我们使用双频矢量pSUMOUlp1。该载体允许重组毒素JarC (rJarC)与小泛素相关修饰物(SUMO)以及SUMO蛋白酶Ulp1融合表达。表达后,该蛋白酶能够有效地去除细菌内部rJarC中的SUMO。从SUMO中分离的rJarC被纯化到预期的分子质量,并被多克隆抗jararhagin抗体识别。在生物活性方面,在体外实验模型中,天然形式和重组形式对HUVEC细胞株CRL1730均无毒性,并能有效调节细胞迁移活性。这些结果证明了rJarC的成功产生和其生物活性的保存,这可能有助于进一步研究这种蛇毒衍生蛋白的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bicistronic Vector Expression of Recombinant Jararhagin-C and Its Effects on Endothelial Cells.

Jararhagin-C (JarC) is a protein from the venom of Bothrops jararaca consisting of disintegrin-like and cysteine-rich domains. JarC shows a modulating effect on angiogenesis and remodeling of extracellular matrix constituents, improving wound healing in a mouse experimental model. JarC is purified from crude venom, and the yield is less than 1%. The aim of this work was to obtain the recombinant form of JarC and to test its biological activity. For this purpose, the bicistronic vector pSUMOUlp1 was used. This vector allowed the expression of the recombinant toxin JarC (rJarC) in fusion with the small ubiquitin-related modifier (SUMO) as well as the SUMO protease Ulp1. After expression, this protease was able to efficiently remove SUMO from rJarC inside the bacteria. rJarC free from SUMO was purified at the expected molecular mass and recognized by polyclonal anti-jararhagin antibodies. In terms of biological activity, both the native and recombinant forms showed no toxicity to the HUVEC cell line CRL1730 and were effective in modulating cell migration activity in the experimental in vitro model. These results demonstrate the successful production of rJarC and the preservation of its biological activity, which may facilitate further investigations into the therapeutic potential of this snake venom-derived protein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxins
Toxins TOXICOLOGY-
CiteScore
7.50
自引率
16.70%
发文量
765
审稿时长
16.24 days
期刊介绍: Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. The First Large Identification of 3ANX and NX Producing Isolates of Fusarium graminearum in Manitoba, Western Canada. Updated Nematocyst Types in Tentacle of Venomous Box Jellyfish, Chironex indrasaksajiae(Sucharitakul, 2017) and Chiropsoides buitendijki(Horst, 1907) (Cnidaria, Cubozoa) in Thai Waters. Crustacean Zooplankton Ingestion of Potentially Toxic Microcystis: In Situ Estimation Using mcyE Gene Gut Content Detection in a Large Temperate Eutrophic Lake. Delphi Consensus on the Management of Spanish Patients with Post-Stroke Hemiplegic Shoulder Pain Treated with Botulinum Toxin A: Result Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1