Fatemeh Ghasemi, Majid Sepahvand, Maytham N Meqdad, Fardin Abdali Mohammadi
{"title":"基于遗传规划生成模型的合成光体积脉搏图(PPG)信号生成。","authors":"Fatemeh Ghasemi, Majid Sepahvand, Maytham N Meqdad, Fardin Abdali Mohammadi","doi":"10.1080/03091902.2024.2438150","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, photoplethysmograph (PPG) technology is being used more often in smart devices and mobile phones due to advancements in information and communication technology in the health field, particularly in monitoring cardiac activities. Developing generative models to generate synthetic PPG signals requires overcoming challenges like data diversity and limited data available for training deep learning models. This paper proposes a generative model by adopting a genetic programming (GP) approach to generate increasingly diversified and accurate data using an initial PPG signal sample. Unlike conventional regression, the GP approach automatically determines the structure and combinations of a mathematical model. Given that mean square error (MSE) of 0.0001, root mean square error (RMSE) of 0.01, and correlation coefficient of 0.999, the proposed approach outperformed other approaches and proved effective in terms of efficiency and applicability in resource-constrained environments.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"223-235"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic photoplethysmogram (PPG) signal generation using a genetic programming-based generative model.\",\"authors\":\"Fatemeh Ghasemi, Majid Sepahvand, Maytham N Meqdad, Fardin Abdali Mohammadi\",\"doi\":\"10.1080/03091902.2024.2438150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nowadays, photoplethysmograph (PPG) technology is being used more often in smart devices and mobile phones due to advancements in information and communication technology in the health field, particularly in monitoring cardiac activities. Developing generative models to generate synthetic PPG signals requires overcoming challenges like data diversity and limited data available for training deep learning models. This paper proposes a generative model by adopting a genetic programming (GP) approach to generate increasingly diversified and accurate data using an initial PPG signal sample. Unlike conventional regression, the GP approach automatically determines the structure and combinations of a mathematical model. Given that mean square error (MSE) of 0.0001, root mean square error (RMSE) of 0.01, and correlation coefficient of 0.999, the proposed approach outperformed other approaches and proved effective in terms of efficiency and applicability in resource-constrained environments.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":\" \",\"pages\":\"223-235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2024.2438150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2024.2438150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Synthetic photoplethysmogram (PPG) signal generation using a genetic programming-based generative model.
Nowadays, photoplethysmograph (PPG) technology is being used more often in smart devices and mobile phones due to advancements in information and communication technology in the health field, particularly in monitoring cardiac activities. Developing generative models to generate synthetic PPG signals requires overcoming challenges like data diversity and limited data available for training deep learning models. This paper proposes a generative model by adopting a genetic programming (GP) approach to generate increasingly diversified and accurate data using an initial PPG signal sample. Unlike conventional regression, the GP approach automatically determines the structure and combinations of a mathematical model. Given that mean square error (MSE) of 0.0001, root mean square error (RMSE) of 0.01, and correlation coefficient of 0.999, the proposed approach outperformed other approaches and proved effective in terms of efficiency and applicability in resource-constrained environments.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.