Nagalakshmi R, Surbhi Bhatia Khan, Ananthoju Vijay Kumar, Mahesh T R, Mohammad Alojail, Saurabh Raj Sangwan, Mo Saraee
{"title":"通过NLP和机器学习在药物数据解释中的力量,通过高级分析增强药物发现和患者护理。","authors":"Nagalakshmi R, Surbhi Bhatia Khan, Ananthoju Vijay Kumar, Mahesh T R, Mohammad Alojail, Saurabh Raj Sangwan, Mo Saraee","doi":"10.1016/j.slast.2024.100238","DOIUrl":null,"url":null,"abstract":"<p><p>This study delves into the transformative potential of Machine Learning (ML) and Natural Language Processing (NLP) within the pharmaceutical industry, spotlighting their significant impact on enhancing medical research methodologies and optimizing healthcare service delivery. Utilizing a vast dataset sourced from a well-established online pharmacy, this research employs sophisticated ML algorithms and cutting-edge NLP techniques to critically analyze medical descriptions and optimize recommendation systems for drug prescriptions and patient care management. Key technological integrations include BERT embeddings, which provide nuanced contextual understanding of complex medical texts, and cosine similarity measures coupled with TF-IDF vectorization to significantly enhance the precision and reliability of text-based medical recommendations. By meticulously adjusting the cosine similarity thresholds from 0.2 to 0.5, our tailored models have consistently achieved a remarkable accuracy rate of 97%, illustrating their effectiveness in predicting suitable medical treatments and interventions. These results not only highlight the revolutionary capabilities of NLP and ML in harnessing data-driven insights for healthcare but also lay a robust groundwork for future advancements in personalized medicine and bespoke treatment pathways. Comprehensive analysis demonstrates the scalability and adaptability of these technologies in real-world healthcare settings, potentially leading to substantial improvements in patient outcomes and operational efficiencies within the healthcare system.</p>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":" ","pages":"100238"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Drug Discovery and Patient Care through Advanced Analytics with The Power of NLP and Machine Learning in Pharmaceutical Data Interpretation.\",\"authors\":\"Nagalakshmi R, Surbhi Bhatia Khan, Ananthoju Vijay Kumar, Mahesh T R, Mohammad Alojail, Saurabh Raj Sangwan, Mo Saraee\",\"doi\":\"10.1016/j.slast.2024.100238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study delves into the transformative potential of Machine Learning (ML) and Natural Language Processing (NLP) within the pharmaceutical industry, spotlighting their significant impact on enhancing medical research methodologies and optimizing healthcare service delivery. Utilizing a vast dataset sourced from a well-established online pharmacy, this research employs sophisticated ML algorithms and cutting-edge NLP techniques to critically analyze medical descriptions and optimize recommendation systems for drug prescriptions and patient care management. Key technological integrations include BERT embeddings, which provide nuanced contextual understanding of complex medical texts, and cosine similarity measures coupled with TF-IDF vectorization to significantly enhance the precision and reliability of text-based medical recommendations. By meticulously adjusting the cosine similarity thresholds from 0.2 to 0.5, our tailored models have consistently achieved a remarkable accuracy rate of 97%, illustrating their effectiveness in predicting suitable medical treatments and interventions. These results not only highlight the revolutionary capabilities of NLP and ML in harnessing data-driven insights for healthcare but also lay a robust groundwork for future advancements in personalized medicine and bespoke treatment pathways. Comprehensive analysis demonstrates the scalability and adaptability of these technologies in real-world healthcare settings, potentially leading to substantial improvements in patient outcomes and operational efficiencies within the healthcare system.</p>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\" \",\"pages\":\"100238\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.slast.2024.100238\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.slast.2024.100238","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhancing Drug Discovery and Patient Care through Advanced Analytics with The Power of NLP and Machine Learning in Pharmaceutical Data Interpretation.
This study delves into the transformative potential of Machine Learning (ML) and Natural Language Processing (NLP) within the pharmaceutical industry, spotlighting their significant impact on enhancing medical research methodologies and optimizing healthcare service delivery. Utilizing a vast dataset sourced from a well-established online pharmacy, this research employs sophisticated ML algorithms and cutting-edge NLP techniques to critically analyze medical descriptions and optimize recommendation systems for drug prescriptions and patient care management. Key technological integrations include BERT embeddings, which provide nuanced contextual understanding of complex medical texts, and cosine similarity measures coupled with TF-IDF vectorization to significantly enhance the precision and reliability of text-based medical recommendations. By meticulously adjusting the cosine similarity thresholds from 0.2 to 0.5, our tailored models have consistently achieved a remarkable accuracy rate of 97%, illustrating their effectiveness in predicting suitable medical treatments and interventions. These results not only highlight the revolutionary capabilities of NLP and ML in harnessing data-driven insights for healthcare but also lay a robust groundwork for future advancements in personalized medicine and bespoke treatment pathways. Comprehensive analysis demonstrates the scalability and adaptability of these technologies in real-world healthcare settings, potentially leading to substantial improvements in patient outcomes and operational efficiencies within the healthcare system.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.