{"title":"OTULIN通过介导GPX4蛋白稳态来逃避线粒体凋亡途径,从而在骨肉瘤中赋予顺铂耐药性。","authors":"Zehang Zheng, Yunhao Zeng, Xing Bao, Chuang Huang, Fengjing Guo, Fei Xu, Zhengqiang Luo","doi":"10.1186/s13046-024-03249-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteosarcoma (OS), the most prevalent primary malignant bone tumor in children and adolescents, arises from bone-forming mesenchymal cells. Despite advancements in surgical resection and neoadjuvant chemotherapy (cisplatin, doxorubicin, and methotrexate), chemotherapy resistance remains a significant challenge, leading to poor survival rates in patients with metastatic or recurrent OS.</p><p><strong>Methods: </strong>In this study, we focused on the role of OTULIN, a key linear deubiquitinating enzyme, in OS chemoresistance. In addition, mechanistic investigations were carried out to identify potential downstream targets of OTULIN involved in cisplatin resistance.</p><p><strong>Results: </strong>Our results demonstrated that OTULIN expression was significantly upregulated in OS tissues and cell lines following cisplatin treatment but not in response to doxorubicin or methotrexate. High OTULIN expression was associated with reduced survival in sarcoma patients. Furthermore, immunohistochemical analysis of prechemotherapy and postchemotherapy OS tissues revealed increased OTULIN expression in postchemotherapy samples. In vitro results demonstrated that OTULIN plays a critical role in mediating cisplatin resistance in OS. Mechanistically, GPX4 could be a downstream target of OTULIN, conferring cisplatin resistance to OS by blocking the mitochondrial apoptotic pathway but not ferroptosis. Specifically, OTULIN prevents the proteasomal degradation of GPX4 by reducing its ubiquitin level, thereby conferring resistance to cisplatin in OS cells.</p><p><strong>Conclusion: </strong>This study highlights the importance of OTULIN in OS chemoresistance and provides a promising approach for targeting the OTULIN-GPX4 axis to improve the prognosis of OS patients. Our findings offer new insights into the molecular mechanisms underlying OS chemoresistance and suggest potential therapeutic targets for future clinical interventions.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"330"},"PeriodicalIF":11.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670407/pdf/","citationCount":"0","resultStr":"{\"title\":\"OTULIN confers cisplatin resistance in osteosarcoma by mediating GPX4 protein homeostasis to evade the mitochondrial apoptotic pathway.\",\"authors\":\"Zehang Zheng, Yunhao Zeng, Xing Bao, Chuang Huang, Fengjing Guo, Fei Xu, Zhengqiang Luo\",\"doi\":\"10.1186/s13046-024-03249-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Osteosarcoma (OS), the most prevalent primary malignant bone tumor in children and adolescents, arises from bone-forming mesenchymal cells. Despite advancements in surgical resection and neoadjuvant chemotherapy (cisplatin, doxorubicin, and methotrexate), chemotherapy resistance remains a significant challenge, leading to poor survival rates in patients with metastatic or recurrent OS.</p><p><strong>Methods: </strong>In this study, we focused on the role of OTULIN, a key linear deubiquitinating enzyme, in OS chemoresistance. In addition, mechanistic investigations were carried out to identify potential downstream targets of OTULIN involved in cisplatin resistance.</p><p><strong>Results: </strong>Our results demonstrated that OTULIN expression was significantly upregulated in OS tissues and cell lines following cisplatin treatment but not in response to doxorubicin or methotrexate. High OTULIN expression was associated with reduced survival in sarcoma patients. Furthermore, immunohistochemical analysis of prechemotherapy and postchemotherapy OS tissues revealed increased OTULIN expression in postchemotherapy samples. In vitro results demonstrated that OTULIN plays a critical role in mediating cisplatin resistance in OS. Mechanistically, GPX4 could be a downstream target of OTULIN, conferring cisplatin resistance to OS by blocking the mitochondrial apoptotic pathway but not ferroptosis. Specifically, OTULIN prevents the proteasomal degradation of GPX4 by reducing its ubiquitin level, thereby conferring resistance to cisplatin in OS cells.</p><p><strong>Conclusion: </strong>This study highlights the importance of OTULIN in OS chemoresistance and provides a promising approach for targeting the OTULIN-GPX4 axis to improve the prognosis of OS patients. Our findings offer new insights into the molecular mechanisms underlying OS chemoresistance and suggest potential therapeutic targets for future clinical interventions.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"330\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03249-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03249-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
OTULIN confers cisplatin resistance in osteosarcoma by mediating GPX4 protein homeostasis to evade the mitochondrial apoptotic pathway.
Background: Osteosarcoma (OS), the most prevalent primary malignant bone tumor in children and adolescents, arises from bone-forming mesenchymal cells. Despite advancements in surgical resection and neoadjuvant chemotherapy (cisplatin, doxorubicin, and methotrexate), chemotherapy resistance remains a significant challenge, leading to poor survival rates in patients with metastatic or recurrent OS.
Methods: In this study, we focused on the role of OTULIN, a key linear deubiquitinating enzyme, in OS chemoresistance. In addition, mechanistic investigations were carried out to identify potential downstream targets of OTULIN involved in cisplatin resistance.
Results: Our results demonstrated that OTULIN expression was significantly upregulated in OS tissues and cell lines following cisplatin treatment but not in response to doxorubicin or methotrexate. High OTULIN expression was associated with reduced survival in sarcoma patients. Furthermore, immunohistochemical analysis of prechemotherapy and postchemotherapy OS tissues revealed increased OTULIN expression in postchemotherapy samples. In vitro results demonstrated that OTULIN plays a critical role in mediating cisplatin resistance in OS. Mechanistically, GPX4 could be a downstream target of OTULIN, conferring cisplatin resistance to OS by blocking the mitochondrial apoptotic pathway but not ferroptosis. Specifically, OTULIN prevents the proteasomal degradation of GPX4 by reducing its ubiquitin level, thereby conferring resistance to cisplatin in OS cells.
Conclusion: This study highlights the importance of OTULIN in OS chemoresistance and provides a promising approach for targeting the OTULIN-GPX4 axis to improve the prognosis of OS patients. Our findings offer new insights into the molecular mechanisms underlying OS chemoresistance and suggest potential therapeutic targets for future clinical interventions.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.