用细胞重编程解码癌症病因学。

IF 3.7 2区 生物学 Q2 CELL BIOLOGY Current Opinion in Genetics & Development Pub Date : 2024-12-24 DOI:10.1016/j.gde.2024.102301
Mo-Fan Huang, Megan E Fisher, Trinh T T Phan, Ruiying Zhao, Dung-Fang Lee
{"title":"用细胞重编程解码癌症病因学。","authors":"Mo-Fan Huang, Megan E Fisher, Trinh T T Phan, Ruiying Zhao, Dung-Fang Lee","doi":"10.1016/j.gde.2024.102301","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer research remains clinically unmet in many areas due to limited access to patient samples and the lack of reliable model systems that truly reflect human cancer biology. The emergence of patient-derived induced pluripotent stem cells and engineered human pluripotent stem cells (hPSCs) has helped overcome these challenges, offering a versatile alternative platform for advancing cancer research. These hPSCs are already proving to be valuable models for studying specific cancer driver mutations, offering insights into cancer origins, pathogenesis, tumor heterogeneity, clonal evolution, and facilitating drug discovery and testing. This article reviews recent progress in utilizing hPSCs for clinically relevant cancer models and highlights efforts to deepen our understanding of fundamental cancer biology.</p>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"90 ","pages":"102301"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding cancer etiology with cellular reprogramming.\",\"authors\":\"Mo-Fan Huang, Megan E Fisher, Trinh T T Phan, Ruiying Zhao, Dung-Fang Lee\",\"doi\":\"10.1016/j.gde.2024.102301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer research remains clinically unmet in many areas due to limited access to patient samples and the lack of reliable model systems that truly reflect human cancer biology. The emergence of patient-derived induced pluripotent stem cells and engineered human pluripotent stem cells (hPSCs) has helped overcome these challenges, offering a versatile alternative platform for advancing cancer research. These hPSCs are already proving to be valuable models for studying specific cancer driver mutations, offering insights into cancer origins, pathogenesis, tumor heterogeneity, clonal evolution, and facilitating drug discovery and testing. This article reviews recent progress in utilizing hPSCs for clinically relevant cancer models and highlights efforts to deepen our understanding of fundamental cancer biology.</p>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":\"90 \",\"pages\":\"102301\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gde.2024.102301\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gde.2024.102301","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于获得患者样本的机会有限,以及缺乏真正反映人类癌症生物学的可靠模型系统,癌症研究在许多领域仍未得到临床满足。患者来源的诱导多能干细胞和工程化人类多能干细胞(hPSCs)的出现帮助克服了这些挑战,为推进癌症研究提供了一个多功能的替代平台。这些hPSCs已经被证明是研究特定癌症驱动突变的有价值的模型,为癌症的起源、发病机制、肿瘤异质性、克隆进化提供了见解,并促进了药物的发现和测试。本文综述了利用hPSCs建立临床相关癌症模型的最新进展,并强调了加深我们对基础癌症生物学的理解的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decoding cancer etiology with cellular reprogramming.

Cancer research remains clinically unmet in many areas due to limited access to patient samples and the lack of reliable model systems that truly reflect human cancer biology. The emergence of patient-derived induced pluripotent stem cells and engineered human pluripotent stem cells (hPSCs) has helped overcome these challenges, offering a versatile alternative platform for advancing cancer research. These hPSCs are already proving to be valuable models for studying specific cancer driver mutations, offering insights into cancer origins, pathogenesis, tumor heterogeneity, clonal evolution, and facilitating drug discovery and testing. This article reviews recent progress in utilizing hPSCs for clinically relevant cancer models and highlights efforts to deepen our understanding of fundamental cancer biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
期刊最新文献
Recipes and ingredients for deep learning models of 3D genome folding. Rewiring cancer: 3D genome determinants of cancer hallmarks. Insights and Interventions in Age-Associated Inflammation. Genome folding by cohesion. Recent insights into the in vitro culture systems for mammalian embryos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1