F. IJdema , S. Lievens , R. Smets , G. Poma , M. Van Der Borght , B. Lievens , J. De Smet
{"title":"底物发酵对黑兵蝇幼虫脂肪酸组成的调节。","authors":"F. IJdema , S. Lievens , R. Smets , G. Poma , M. Van Der Borght , B. Lievens , J. De Smet","doi":"10.1016/j.animal.2024.101383","DOIUrl":null,"url":null,"abstract":"<div><div>Black soldier fly larvae (<strong>BSFL</strong>, <em>Hermetia illucens</em>) contain high amounts of proteins and essential amino acids and are therefore an appropriate feed source. However, they lack essential fatty acids (<strong>FAs</strong>), specifically ω-3 and ω-6, making them a less desirable feed choice for aquaculture. The aim of this study was to increase the ω-3 and ω-6 FA concentrations in BSFL by manipulating the FA composition in their rearing substrate. Specifically, the potential of substrate fermentation using the ω-3 and ω-6 FA−producing fungus <em>Mortierella alpina</em> was assessed. Fermentation of two agricultural side streams (wheat bran (<strong>WB</strong>) and WB with distiller’s dried grains with solubles (<strong>DDGS</strong>)) increased substrate total crude fat concentration by 2.1 – 4.6%, as well as the concentration of several essential FAs, including the ω-6 FAs arachidonic acid (from less than 0.2 mg/g fat to a maximum of 44.2 mg/g fat) and gamma-linolenic acid (from less than 1.2 mg/g fat to a maximum of 45.8 mg/g fat and the ω-3 FA eicosapentaenoic acid (<strong>EPA</strong>) (from less than 0.7 mg/g fat to a maximum of 49.9 mg/g fat). Rearing BSFL on feeds from such fermented substrates resulted in similar changes in larval FA composition, specifically a higher concentration of EPA (from less than 0.2 mg/g fat to a maximum of 26.6 mg/g fat in the larvae fed on fermented diets), however, larval growth was reduced. Feeds made from fermented substrates were prone to stickiness and dehydration, possibly limiting larval movement and feeding, thereby affecting larval growth. Furthermore, proximate analysis of the substrates revealed sugar depletion after fermentation, which could be detrimental for larval growth and illustrate important attention points going forward. This study shows that fermentation of agricultural side streams WB and a mixture of WB with DDGS with <em>Mortierella alpina</em> alters their FA profile, increasing their ω-3 and ω-6 FA concentrations and that of BSFL fed with those substrates. Therefore, these results suggest that BSFL with tailor-made FA profiles for a specific application could be successfully produced.</div></div>","PeriodicalId":50789,"journal":{"name":"Animal","volume":"19 1","pages":"Article 101383"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating the fatty acid composition of black soldier fly larvae via substrate fermentation\",\"authors\":\"F. IJdema , S. Lievens , R. Smets , G. Poma , M. Van Der Borght , B. Lievens , J. De Smet\",\"doi\":\"10.1016/j.animal.2024.101383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Black soldier fly larvae (<strong>BSFL</strong>, <em>Hermetia illucens</em>) contain high amounts of proteins and essential amino acids and are therefore an appropriate feed source. However, they lack essential fatty acids (<strong>FAs</strong>), specifically ω-3 and ω-6, making them a less desirable feed choice for aquaculture. The aim of this study was to increase the ω-3 and ω-6 FA concentrations in BSFL by manipulating the FA composition in their rearing substrate. Specifically, the potential of substrate fermentation using the ω-3 and ω-6 FA−producing fungus <em>Mortierella alpina</em> was assessed. Fermentation of two agricultural side streams (wheat bran (<strong>WB</strong>) and WB with distiller’s dried grains with solubles (<strong>DDGS</strong>)) increased substrate total crude fat concentration by 2.1 – 4.6%, as well as the concentration of several essential FAs, including the ω-6 FAs arachidonic acid (from less than 0.2 mg/g fat to a maximum of 44.2 mg/g fat) and gamma-linolenic acid (from less than 1.2 mg/g fat to a maximum of 45.8 mg/g fat and the ω-3 FA eicosapentaenoic acid (<strong>EPA</strong>) (from less than 0.7 mg/g fat to a maximum of 49.9 mg/g fat). Rearing BSFL on feeds from such fermented substrates resulted in similar changes in larval FA composition, specifically a higher concentration of EPA (from less than 0.2 mg/g fat to a maximum of 26.6 mg/g fat in the larvae fed on fermented diets), however, larval growth was reduced. Feeds made from fermented substrates were prone to stickiness and dehydration, possibly limiting larval movement and feeding, thereby affecting larval growth. Furthermore, proximate analysis of the substrates revealed sugar depletion after fermentation, which could be detrimental for larval growth and illustrate important attention points going forward. This study shows that fermentation of agricultural side streams WB and a mixture of WB with DDGS with <em>Mortierella alpina</em> alters their FA profile, increasing their ω-3 and ω-6 FA concentrations and that of BSFL fed with those substrates. Therefore, these results suggest that BSFL with tailor-made FA profiles for a specific application could be successfully produced.</div></div>\",\"PeriodicalId\":50789,\"journal\":{\"name\":\"Animal\",\"volume\":\"19 1\",\"pages\":\"Article 101383\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751731124003203\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751731124003203","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Modulating the fatty acid composition of black soldier fly larvae via substrate fermentation
Black soldier fly larvae (BSFL, Hermetia illucens) contain high amounts of proteins and essential amino acids and are therefore an appropriate feed source. However, they lack essential fatty acids (FAs), specifically ω-3 and ω-6, making them a less desirable feed choice for aquaculture. The aim of this study was to increase the ω-3 and ω-6 FA concentrations in BSFL by manipulating the FA composition in their rearing substrate. Specifically, the potential of substrate fermentation using the ω-3 and ω-6 FA−producing fungus Mortierella alpina was assessed. Fermentation of two agricultural side streams (wheat bran (WB) and WB with distiller’s dried grains with solubles (DDGS)) increased substrate total crude fat concentration by 2.1 – 4.6%, as well as the concentration of several essential FAs, including the ω-6 FAs arachidonic acid (from less than 0.2 mg/g fat to a maximum of 44.2 mg/g fat) and gamma-linolenic acid (from less than 1.2 mg/g fat to a maximum of 45.8 mg/g fat and the ω-3 FA eicosapentaenoic acid (EPA) (from less than 0.7 mg/g fat to a maximum of 49.9 mg/g fat). Rearing BSFL on feeds from such fermented substrates resulted in similar changes in larval FA composition, specifically a higher concentration of EPA (from less than 0.2 mg/g fat to a maximum of 26.6 mg/g fat in the larvae fed on fermented diets), however, larval growth was reduced. Feeds made from fermented substrates were prone to stickiness and dehydration, possibly limiting larval movement and feeding, thereby affecting larval growth. Furthermore, proximate analysis of the substrates revealed sugar depletion after fermentation, which could be detrimental for larval growth and illustrate important attention points going forward. This study shows that fermentation of agricultural side streams WB and a mixture of WB with DDGS with Mortierella alpina alters their FA profile, increasing their ω-3 and ω-6 FA concentrations and that of BSFL fed with those substrates. Therefore, these results suggest that BSFL with tailor-made FA profiles for a specific application could be successfully produced.
期刊介绍:
Editorial board
animal attracts the best research in animal biology and animal systems from across the spectrum of the agricultural, biomedical, and environmental sciences. It is the central element in an exciting collaboration between the British Society of Animal Science (BSAS), Institut National de la Recherche Agronomique (INRA) and the European Federation of Animal Science (EAAP) and represents a merging of three scientific journals: Animal Science; Animal Research; Reproduction, Nutrition, Development. animal publishes original cutting-edge research, ''hot'' topics and horizon-scanning reviews on animal-related aspects of the life sciences at the molecular, cellular, organ, whole animal and production system levels. The main subject areas include: breeding and genetics; nutrition; physiology and functional biology of systems; behaviour, health and welfare; farming systems, environmental impact and climate change; product quality, human health and well-being. Animal models and papers dealing with the integration of research between these topics and their impact on the environment and people are particularly welcome.