Anke Hua , Mélen Guillaume , Sergio T. Rodrigues , Fabio A. Barbieri , Cédrick T. Bonnet
{"title":"在目标导向的视觉任务中,站立时摇摆对更高选择性注意力的好处。","authors":"Anke Hua , Mélen Guillaume , Sergio T. Rodrigues , Fabio A. Barbieri , Cédrick T. Bonnet","doi":"10.1016/j.humov.2024.103318","DOIUrl":null,"url":null,"abstract":"<div><div>Background and aim: Sit-stand desks allow individuals to work in either sitting or standing position. While previous studies have reported better performance on the attention network test (ANT) while standing compared to sitting, the relationship between body sway induced by these positions and ANT performance remains unclear. In this study, we aimed to test and expect benefits of body sway (in terms of magnitude and complexity) and improvements in ANT performance when standing (e.g. shorter reaction time) but not when sitting. Methods: Seventeen young adults (mean age = 21) performed reading tasks, questionnaires and ANTs sequentially in both standing and sitting positions. We measured body kinematics from the head, upper back and lower back during the study. We calculated the linear (i.e., velocity) and nonlinear (i.e., fractal dimension) variables of body sway, reaction times and alerting scores from the ANT. Our results showed that when standing, the complexity of sway was significantly negatively correlated with ANT reaction times (shorter reaction time indicating better performance) and significantly positively correlated with the scores of alerting from ANT. Hence, consistent with our expectation, ANT performance was higher when standing potentially because participants adjusted their sway. In contrast, while sitting, there was no significant correlation between body sway and ANT performance. Overall, the complexity of body sway in the standing position may increase alertness levels, potentially leading to better visual task performance. Practically, these findings suggest that working occasionally in the standing position is beneficial, as dynamic postural sway can enhance visual task performance.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":"99 ","pages":"Article 103318"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benefits of swaying while standing to higher selective attention in goal-directed visual tasks\",\"authors\":\"Anke Hua , Mélen Guillaume , Sergio T. Rodrigues , Fabio A. Barbieri , Cédrick T. Bonnet\",\"doi\":\"10.1016/j.humov.2024.103318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Background and aim: Sit-stand desks allow individuals to work in either sitting or standing position. While previous studies have reported better performance on the attention network test (ANT) while standing compared to sitting, the relationship between body sway induced by these positions and ANT performance remains unclear. In this study, we aimed to test and expect benefits of body sway (in terms of magnitude and complexity) and improvements in ANT performance when standing (e.g. shorter reaction time) but not when sitting. Methods: Seventeen young adults (mean age = 21) performed reading tasks, questionnaires and ANTs sequentially in both standing and sitting positions. We measured body kinematics from the head, upper back and lower back during the study. We calculated the linear (i.e., velocity) and nonlinear (i.e., fractal dimension) variables of body sway, reaction times and alerting scores from the ANT. Our results showed that when standing, the complexity of sway was significantly negatively correlated with ANT reaction times (shorter reaction time indicating better performance) and significantly positively correlated with the scores of alerting from ANT. Hence, consistent with our expectation, ANT performance was higher when standing potentially because participants adjusted their sway. In contrast, while sitting, there was no significant correlation between body sway and ANT performance. Overall, the complexity of body sway in the standing position may increase alertness levels, potentially leading to better visual task performance. Practically, these findings suggest that working occasionally in the standing position is beneficial, as dynamic postural sway can enhance visual task performance.</div></div>\",\"PeriodicalId\":55046,\"journal\":{\"name\":\"Human Movement Science\",\"volume\":\"99 \",\"pages\":\"Article 103318\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Movement Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016794572400143X\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794572400143X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Benefits of swaying while standing to higher selective attention in goal-directed visual tasks
Background and aim: Sit-stand desks allow individuals to work in either sitting or standing position. While previous studies have reported better performance on the attention network test (ANT) while standing compared to sitting, the relationship between body sway induced by these positions and ANT performance remains unclear. In this study, we aimed to test and expect benefits of body sway (in terms of magnitude and complexity) and improvements in ANT performance when standing (e.g. shorter reaction time) but not when sitting. Methods: Seventeen young adults (mean age = 21) performed reading tasks, questionnaires and ANTs sequentially in both standing and sitting positions. We measured body kinematics from the head, upper back and lower back during the study. We calculated the linear (i.e., velocity) and nonlinear (i.e., fractal dimension) variables of body sway, reaction times and alerting scores from the ANT. Our results showed that when standing, the complexity of sway was significantly negatively correlated with ANT reaction times (shorter reaction time indicating better performance) and significantly positively correlated with the scores of alerting from ANT. Hence, consistent with our expectation, ANT performance was higher when standing potentially because participants adjusted their sway. In contrast, while sitting, there was no significant correlation between body sway and ANT performance. Overall, the complexity of body sway in the standing position may increase alertness levels, potentially leading to better visual task performance. Practically, these findings suggest that working occasionally in the standing position is beneficial, as dynamic postural sway can enhance visual task performance.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."