{"title":"神经元行波利用突触可塑性形成首选通路。","authors":"Kendall Butler, Luis Cruz","doi":"10.1007/s10827-024-00890-2","DOIUrl":null,"url":null,"abstract":"<p><p>Traveling waves of neuronal spiking activity are commonly observed across the brain, but their intrinsic function is still a matter of investigation. Experiments suggest that they may be valuable in the consolidation of memory or learning, indicating that consideration of traveling waves in the presence of plasticity might be important. A possible outcome of this consideration is that the synaptic pathways, necessary for the propagation of these waves, will be modified by the waves themselves. This will create a feedback loop where both the traveling waves and the strengths of the available synaptic pathways will change. To computationally investigate this, we model a sheet of cortical tissue by considering a quasi two-dimensional network of model neurons locally connected with plastic synaptic weights using Spike-Timing Dependent Plasticity (STDP). By using different stimulation conditions (central, stochastic, and alternating stimulation), we demonstrate that starting from a random network, traveling waves with STDP will form and strengthen propagation pathways. With progressive formation of traveling waves, we observe increases in synaptic weight along the direction of wave propagation, increases in propagation speed when pathways are strengthened over time, and an increase in the local order of synaptic weights. We also present evidence that the interaction between traveling waves and plasticity can serve as a mechanism of network-wide competition between available pathways. With an improved understanding of the interactions between traveling waves and synaptic plasticity, we can approach a fuller understanding of mechanisms of learning, computation, and processing within the brain.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuronal traveling waves form preferred pathways using synaptic plasticity.\",\"authors\":\"Kendall Butler, Luis Cruz\",\"doi\":\"10.1007/s10827-024-00890-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traveling waves of neuronal spiking activity are commonly observed across the brain, but their intrinsic function is still a matter of investigation. Experiments suggest that they may be valuable in the consolidation of memory or learning, indicating that consideration of traveling waves in the presence of plasticity might be important. A possible outcome of this consideration is that the synaptic pathways, necessary for the propagation of these waves, will be modified by the waves themselves. This will create a feedback loop where both the traveling waves and the strengths of the available synaptic pathways will change. To computationally investigate this, we model a sheet of cortical tissue by considering a quasi two-dimensional network of model neurons locally connected with plastic synaptic weights using Spike-Timing Dependent Plasticity (STDP). By using different stimulation conditions (central, stochastic, and alternating stimulation), we demonstrate that starting from a random network, traveling waves with STDP will form and strengthen propagation pathways. With progressive formation of traveling waves, we observe increases in synaptic weight along the direction of wave propagation, increases in propagation speed when pathways are strengthened over time, and an increase in the local order of synaptic weights. We also present evidence that the interaction between traveling waves and plasticity can serve as a mechanism of network-wide competition between available pathways. With an improved understanding of the interactions between traveling waves and synaptic plasticity, we can approach a fuller understanding of mechanisms of learning, computation, and processing within the brain.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-024-00890-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-024-00890-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Neuronal traveling waves form preferred pathways using synaptic plasticity.
Traveling waves of neuronal spiking activity are commonly observed across the brain, but their intrinsic function is still a matter of investigation. Experiments suggest that they may be valuable in the consolidation of memory or learning, indicating that consideration of traveling waves in the presence of plasticity might be important. A possible outcome of this consideration is that the synaptic pathways, necessary for the propagation of these waves, will be modified by the waves themselves. This will create a feedback loop where both the traveling waves and the strengths of the available synaptic pathways will change. To computationally investigate this, we model a sheet of cortical tissue by considering a quasi two-dimensional network of model neurons locally connected with plastic synaptic weights using Spike-Timing Dependent Plasticity (STDP). By using different stimulation conditions (central, stochastic, and alternating stimulation), we demonstrate that starting from a random network, traveling waves with STDP will form and strengthen propagation pathways. With progressive formation of traveling waves, we observe increases in synaptic weight along the direction of wave propagation, increases in propagation speed when pathways are strengthened over time, and an increase in the local order of synaptic weights. We also present evidence that the interaction between traveling waves and plasticity can serve as a mechanism of network-wide competition between available pathways. With an improved understanding of the interactions between traveling waves and synaptic plasticity, we can approach a fuller understanding of mechanisms of learning, computation, and processing within the brain.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.