{"title":"帕金森病多数据集T1 MRI形态学分类的协调。","authors":"Mohammed Saqib, Silvina G Horovitz","doi":"10.3390/neurosci5040042","DOIUrl":null,"url":null,"abstract":"<p><p>Classification of disease and healthy volunteer cohorts provides a useful clinical alternative to traditional group statistics due to individualized, personalized predictions. Classifiers for neurodegenerative disease can be trained on structural MRI morphometry, but require large multi-scanner datasets, introducing confounding batch effects. We test ComBat, a common harmonization model, in an example application to classify subjects with Parkinson's disease from healthy volunteers and identify common pitfalls, including data leakage. We used a multi-dataset cohort of 372 subjects (216 with Parkinson's disease, 156 healthy volunteers) from 11 identified scanners. We extracted both FreeSurfer and the determinant of Jacobian morphometry to compare single-scanner and multi-scanner classification pipelines. We confirm the presence of batch effects by running single scanner classifiers which could achieve wildly divergent AUCs on scanner-specific datasets (mean:0.651 ± 0.144). Multi-scanner classifiers that considered neurobiological batch effects between sites could easily achieve a test AUC of 0.902, though pipelines that prevented data leakage could only achieve a test AUC of 0.550. We conclude that batch effects remain a major issue for classification problems, such that even impressive single-scanner classifiers are unlikely to generalize to multiple scanners, and that solving for batch effects in a classifier problem must avoid circularity and reporting overly optimistic results.</p>","PeriodicalId":74294,"journal":{"name":"NeuroSci","volume":"5 4","pages":"600-613"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678312/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harmonization for Parkinson's Disease Multi-Dataset T1 MRI Morphometry Classification.\",\"authors\":\"Mohammed Saqib, Silvina G Horovitz\",\"doi\":\"10.3390/neurosci5040042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Classification of disease and healthy volunteer cohorts provides a useful clinical alternative to traditional group statistics due to individualized, personalized predictions. Classifiers for neurodegenerative disease can be trained on structural MRI morphometry, but require large multi-scanner datasets, introducing confounding batch effects. We test ComBat, a common harmonization model, in an example application to classify subjects with Parkinson's disease from healthy volunteers and identify common pitfalls, including data leakage. We used a multi-dataset cohort of 372 subjects (216 with Parkinson's disease, 156 healthy volunteers) from 11 identified scanners. We extracted both FreeSurfer and the determinant of Jacobian morphometry to compare single-scanner and multi-scanner classification pipelines. We confirm the presence of batch effects by running single scanner classifiers which could achieve wildly divergent AUCs on scanner-specific datasets (mean:0.651 ± 0.144). Multi-scanner classifiers that considered neurobiological batch effects between sites could easily achieve a test AUC of 0.902, though pipelines that prevented data leakage could only achieve a test AUC of 0.550. We conclude that batch effects remain a major issue for classification problems, such that even impressive single-scanner classifiers are unlikely to generalize to multiple scanners, and that solving for batch effects in a classifier problem must avoid circularity and reporting overly optimistic results.</p>\",\"PeriodicalId\":74294,\"journal\":{\"name\":\"NeuroSci\",\"volume\":\"5 4\",\"pages\":\"600-613\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678312/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroSci\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/neurosci5040042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurosci5040042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Harmonization for Parkinson's Disease Multi-Dataset T1 MRI Morphometry Classification.
Classification of disease and healthy volunteer cohorts provides a useful clinical alternative to traditional group statistics due to individualized, personalized predictions. Classifiers for neurodegenerative disease can be trained on structural MRI morphometry, but require large multi-scanner datasets, introducing confounding batch effects. We test ComBat, a common harmonization model, in an example application to classify subjects with Parkinson's disease from healthy volunteers and identify common pitfalls, including data leakage. We used a multi-dataset cohort of 372 subjects (216 with Parkinson's disease, 156 healthy volunteers) from 11 identified scanners. We extracted both FreeSurfer and the determinant of Jacobian morphometry to compare single-scanner and multi-scanner classification pipelines. We confirm the presence of batch effects by running single scanner classifiers which could achieve wildly divergent AUCs on scanner-specific datasets (mean:0.651 ± 0.144). Multi-scanner classifiers that considered neurobiological batch effects between sites could easily achieve a test AUC of 0.902, though pipelines that prevented data leakage could only achieve a test AUC of 0.550. We conclude that batch effects remain a major issue for classification problems, such that even impressive single-scanner classifiers are unlikely to generalize to multiple scanners, and that solving for batch effects in a classifier problem must avoid circularity and reporting overly optimistic results.