“基因拉链”方法为控制蚜虫提供了一种经济有效的解决方案。

IF 2.4 Q1 ENTOMOLOGY Frontiers in insect science Pub Date : 2024-12-11 eCollection Date: 2024-01-01 DOI:10.3389/finsc.2024.1467221
Vol V Oberemok, Yelizaveta V Puzanova, Nikita V Gal'chinsky
{"title":"“基因拉链”方法为控制蚜虫提供了一种经济有效的解决方案。","authors":"Vol V Oberemok, Yelizaveta V Puzanova, Nikita V Gal'chinsky","doi":"10.3389/finsc.2024.1467221","DOIUrl":null,"url":null,"abstract":"<p><p>Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought. The main paradigm shift was demonstrating that unmodified antisense DNA can act as a contact insecticide. Key breakthroughs included identifying convenient target genes (rRNA genes), mechanism of action (DNA containment), and discovering insect pests (sternorrhynchans) with high susceptibility to olinscides. Today, the CUAD platform possesses impressive characteristics: low carbon footprint, high safety for non-target organisms, rapid biodegradability, and avoidance of target-site resistance. This next-generation class of insecticides creates opportunities for developing products tailored for specific insect pest populations. The 'genetic zipper' method, based on CUAD biotechnology, integrates molecular genetics, bioinformatics, and <i>in vitro</i> nucleic acid synthesis. It serves as a simple and flexible tool for DNA-programmable plant protection using unmodified antisense oligonucleotides targeting pest rRNAs. Aphids, key pests of important agricultural crops, can be effectively controlled by oligonucleotide insecticides at an affordable price, ensuring efficient control with minimal environmental risks. In this article, a low-dose concentration (0.1 ng/µL; 20 mg per hectare in 200 L of water) of the 11 nt long oligonucleotide insecticide Schip-11 shows effectiveness against the aphid <i>Schizolachnus pineti</i>, causing mortality rate of 76.06 ± 7.68 on the 12<sup>th</sup> day (p<0.05). At a consumption rate of 200 L per hectare, the cost of the required oligonucleotide insecticide is about 0.5 USD/ha using liquid-phase DNA synthesis making them competitive in the market and very affordable for lab investigations. We also show that non-canonical base pairing G<sub>olinscide</sub>: U<sub>rRNA</sub> is well tolerated in aphids. Thus, non-canonical base-pairing should be considered not to harm non-target organisms and can be easily solved during the design of oligonucleotide insecticides. The 'genetic zipper' method, based on CUAD biotechnology, helps quickly create a plethora of efficient oligonucleotide pesticides against aphids and other pests. Already today, according to our estimations, the 'genetic zipper' is potentially capable of effectively controlling 10-15% of all insect pests using a simple and flexible algorithm.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1467221"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670321/pdf/","citationCount":"0","resultStr":"{\"title\":\"The 'genetic zipper' method offers a cost-effective solution for aphid control.\",\"authors\":\"Vol V Oberemok, Yelizaveta V Puzanova, Nikita V Gal'chinsky\",\"doi\":\"10.3389/finsc.2024.1467221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought. The main paradigm shift was demonstrating that unmodified antisense DNA can act as a contact insecticide. Key breakthroughs included identifying convenient target genes (rRNA genes), mechanism of action (DNA containment), and discovering insect pests (sternorrhynchans) with high susceptibility to olinscides. Today, the CUAD platform possesses impressive characteristics: low carbon footprint, high safety for non-target organisms, rapid biodegradability, and avoidance of target-site resistance. This next-generation class of insecticides creates opportunities for developing products tailored for specific insect pest populations. The 'genetic zipper' method, based on CUAD biotechnology, integrates molecular genetics, bioinformatics, and <i>in vitro</i> nucleic acid synthesis. It serves as a simple and flexible tool for DNA-programmable plant protection using unmodified antisense oligonucleotides targeting pest rRNAs. Aphids, key pests of important agricultural crops, can be effectively controlled by oligonucleotide insecticides at an affordable price, ensuring efficient control with minimal environmental risks. In this article, a low-dose concentration (0.1 ng/µL; 20 mg per hectare in 200 L of water) of the 11 nt long oligonucleotide insecticide Schip-11 shows effectiveness against the aphid <i>Schizolachnus pineti</i>, causing mortality rate of 76.06 ± 7.68 on the 12<sup>th</sup> day (p<0.05). At a consumption rate of 200 L per hectare, the cost of the required oligonucleotide insecticide is about 0.5 USD/ha using liquid-phase DNA synthesis making them competitive in the market and very affordable for lab investigations. We also show that non-canonical base pairing G<sub>olinscide</sub>: U<sub>rRNA</sub> is well tolerated in aphids. Thus, non-canonical base-pairing should be considered not to harm non-target organisms and can be easily solved during the design of oligonucleotide insecticides. The 'genetic zipper' method, based on CUAD biotechnology, helps quickly create a plethora of efficient oligonucleotide pesticides against aphids and other pests. Already today, according to our estimations, the 'genetic zipper' is potentially capable of effectively controlling 10-15% of all insect pests using a simple and flexible algorithm.</p>\",\"PeriodicalId\":517424,\"journal\":{\"name\":\"Frontiers in insect science\",\"volume\":\"4 \",\"pages\":\"1467221\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670321/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in insect science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/finsc.2024.1467221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in insect science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/finsc.2024.1467221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

20年前,人们很难想象核酸作为杀虫剂在植物保护领域的应用,但今天这已经成为现实。新技术往往效率低下,而且非常昂贵;然而,在它们的发展过程中发生了质的变化,使它们更容易获得并更有效地工作。2008年发明的基于CUAD(接触未修饰反义DNA)平台的接触寡核苷酸杀虫剂(olinscides,或DNA杀虫剂)已经得到了实质性的改进和反思。主要的范式转变是证明未经修饰的反义DNA可以作为接触性杀虫剂。关键突破包括鉴定便捷靶基因(rRNA基因)、作用机制(DNA遏制)和发现对橄榄苷高易感害虫(sternorrhynchans)。今天,CUAD平台具有令人印象深刻的特点:低碳足迹,对非目标生物的高安全性,快速的生物降解性,以及避免目标位点的抗性。这种新一代杀虫剂为开发针对特定害虫种群的产品创造了机会。基于CUAD生物技术的“基因拉链”方法,将分子遗传学、生物信息学和体外核酸合成相结合。它是一种简单而灵活的dna可编程植物保护工具,使用未经修饰的反义寡核苷酸靶向害虫rna。蚜虫是重要农作物的主要害虫,寡核苷酸杀虫剂可以以低廉的价格有效防治蚜虫,确保在环境风险最小的情况下实现高效防治。在本文中,低剂量浓度(0.1 ng/µL;11 nt长寡核苷酸杀虫剂Schip-11对松节虫(Schizolachnus pineti)有效,第12天的死亡率为76.06±7.68(花粉:UrRNA在蚜虫中具有良好的耐受性)。因此,在设计寡核苷酸杀虫剂时,应考虑非规范碱基配对对非目标生物的危害,并易于解决。这种基于CUAD生物技术的“基因拉链”方法有助于快速创造出大量有效的寡核苷酸杀虫剂来对付蚜虫和其他害虫。今天,根据我们的估计,“基因拉链”已经能够使用一个简单而灵活的算法有效控制所有害虫的10-15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The 'genetic zipper' method offers a cost-effective solution for aphid control.

Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought. The main paradigm shift was demonstrating that unmodified antisense DNA can act as a contact insecticide. Key breakthroughs included identifying convenient target genes (rRNA genes), mechanism of action (DNA containment), and discovering insect pests (sternorrhynchans) with high susceptibility to olinscides. Today, the CUAD platform possesses impressive characteristics: low carbon footprint, high safety for non-target organisms, rapid biodegradability, and avoidance of target-site resistance. This next-generation class of insecticides creates opportunities for developing products tailored for specific insect pest populations. The 'genetic zipper' method, based on CUAD biotechnology, integrates molecular genetics, bioinformatics, and in vitro nucleic acid synthesis. It serves as a simple and flexible tool for DNA-programmable plant protection using unmodified antisense oligonucleotides targeting pest rRNAs. Aphids, key pests of important agricultural crops, can be effectively controlled by oligonucleotide insecticides at an affordable price, ensuring efficient control with minimal environmental risks. In this article, a low-dose concentration (0.1 ng/µL; 20 mg per hectare in 200 L of water) of the 11 nt long oligonucleotide insecticide Schip-11 shows effectiveness against the aphid Schizolachnus pineti, causing mortality rate of 76.06 ± 7.68 on the 12th day (p<0.05). At a consumption rate of 200 L per hectare, the cost of the required oligonucleotide insecticide is about 0.5 USD/ha using liquid-phase DNA synthesis making them competitive in the market and very affordable for lab investigations. We also show that non-canonical base pairing Golinscide: UrRNA is well tolerated in aphids. Thus, non-canonical base-pairing should be considered not to harm non-target organisms and can be easily solved during the design of oligonucleotide insecticides. The 'genetic zipper' method, based on CUAD biotechnology, helps quickly create a plethora of efficient oligonucleotide pesticides against aphids and other pests. Already today, according to our estimations, the 'genetic zipper' is potentially capable of effectively controlling 10-15% of all insect pests using a simple and flexible algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Pesticidal plant extract effect against major lepidopteran insect pests and their natural enemies in rice Oryza sativa L. Uncharted territory: the arrival of Psychoda albipennis (Zetterstedt, 1850) (Diptera: Psychodidae) in Maritime Antarctica. Ecological interactions, host plant defenses, and control strategies in managing soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae). The 'genetic zipper' method offers a cost-effective solution for aphid control. Evidence of horizontal transmission of Wolbachia wCcep in rice moths parasitized by Trichogramma chilonis and its persistence across generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1