通过空间建模确定高发城市环境中的皮肤利什曼病传播高风险区:伊朗马什哈德案例研究。

IF 3.8 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Health & Place Pub Date : 2025-01-01 DOI:10.1016/j.healthplace.2024.103394
Alireza Mohammadi , David H. Hamer , Elahe Pishagar , Robert Bergquist
{"title":"通过空间建模确定高发城市环境中的皮肤利什曼病传播高风险区:伊朗马什哈德案例研究。","authors":"Alireza Mohammadi ,&nbsp;David H. Hamer ,&nbsp;Elahe Pishagar ,&nbsp;Robert Bergquist","doi":"10.1016/j.healthplace.2024.103394","DOIUrl":null,"url":null,"abstract":"<div><div>Spatial modelling was employed to identify high-risk zones for the transmission of cutaneous leishmaniasis in hyperendemic urban environments, focusing on Mashhad, Iran. Data analysis from 3033 CL patients (2016–2020) integrated socio-demographic, environmental, and geological factors using negative binomial regression and the technique for order of preference by similarity to ideal solution (TOPSIS) model. Findings indicate that 42.8% of the study area, affecting 20% of Mashhad's population, is at heightened risk due to factors such as high illiteracy rates, dense populations, poor built environment quality, and specific geological conditions. The model achieved an area under the curve (AUC) of 0.83, signifying strong discrimination, with Kappa statistics (KNO = 0.60, K standard = 0.56) showing substantial agreement. These insights can be used to inform targeted surveillance and effective disease control strategies.</div></div>","PeriodicalId":49302,"journal":{"name":"Health & Place","volume":"91 ","pages":"Article 103394"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial modelling to identify high-risk zones for the transmission of cutaneous leishmaniasis in hyperendemic urban environments: A case study of Mashhad, Iran\",\"authors\":\"Alireza Mohammadi ,&nbsp;David H. Hamer ,&nbsp;Elahe Pishagar ,&nbsp;Robert Bergquist\",\"doi\":\"10.1016/j.healthplace.2024.103394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spatial modelling was employed to identify high-risk zones for the transmission of cutaneous leishmaniasis in hyperendemic urban environments, focusing on Mashhad, Iran. Data analysis from 3033 CL patients (2016–2020) integrated socio-demographic, environmental, and geological factors using negative binomial regression and the technique for order of preference by similarity to ideal solution (TOPSIS) model. Findings indicate that 42.8% of the study area, affecting 20% of Mashhad's population, is at heightened risk due to factors such as high illiteracy rates, dense populations, poor built environment quality, and specific geological conditions. The model achieved an area under the curve (AUC) of 0.83, signifying strong discrimination, with Kappa statistics (KNO = 0.60, K standard = 0.56) showing substantial agreement. These insights can be used to inform targeted surveillance and effective disease control strategies.</div></div>\",\"PeriodicalId\":49302,\"journal\":{\"name\":\"Health & Place\",\"volume\":\"91 \",\"pages\":\"Article 103394\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health & Place\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1353829224002223\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health & Place","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1353829224002223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

采用空间模型确定高流行城市环境中皮肤利什曼病传播的高危区,重点是伊朗马什哈德。数据分析来自3033例CL患者(2016-2020),采用负二项回归和TOPSIS模型的偏好排序技术,综合了社会人口、环境和地质因素。研究结果表明,由于文盲率高、人口密集、建筑环境质量差和特定的地质条件等因素,42.8%的研究区域(占马什哈德人口的20%)面临更高的风险。模型的曲线下面积(AUC)为0.83,判别性较强,Kappa统计量(KNO = 0.60, K标准= 0.56)基本一致。这些见解可用于为有针对性的监测和有效的疾病控制战略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial modelling to identify high-risk zones for the transmission of cutaneous leishmaniasis in hyperendemic urban environments: A case study of Mashhad, Iran
Spatial modelling was employed to identify high-risk zones for the transmission of cutaneous leishmaniasis in hyperendemic urban environments, focusing on Mashhad, Iran. Data analysis from 3033 CL patients (2016–2020) integrated socio-demographic, environmental, and geological factors using negative binomial regression and the technique for order of preference by similarity to ideal solution (TOPSIS) model. Findings indicate that 42.8% of the study area, affecting 20% of Mashhad's population, is at heightened risk due to factors such as high illiteracy rates, dense populations, poor built environment quality, and specific geological conditions. The model achieved an area under the curve (AUC) of 0.83, signifying strong discrimination, with Kappa statistics (KNO = 0.60, K standard = 0.56) showing substantial agreement. These insights can be used to inform targeted surveillance and effective disease control strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health & Place
Health & Place PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
7.70
自引率
6.20%
发文量
176
审稿时长
29 days
期刊介绍: he journal is an interdisciplinary journal dedicated to the study of all aspects of health and health care in which place or location matters.
期刊最新文献
Connecting place and nature-based traditional and spiritual practices among American Indian and First Nation youth Place effects on adult obesity and cardiometabolic health: Evidence from a natural experiment Modeling the spatiotemporal transmission of COVID-19 epidemic by coupling the heterogeneous impact of detection rates: A case study in Hong Kong Examining the indirect effect of park size on community health via crime risk in Alabama: A cross-sectional mediation model Assessing the impact of socioeconomic and environmental factors on mental health during the COVID-19 pandemic based on GPS-enabled mobile sensing and survey data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1