骨压痕切削过程中的切削力与微损伤分析。

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-12-17 DOI:10.1016/j.jmbbm.2024.106870
Ger Reilly , David Taylor
{"title":"骨压痕切削过程中的切削力与微损伤分析。","authors":"Ger Reilly ,&nbsp;David Taylor","doi":"10.1016/j.jmbbm.2024.106870","DOIUrl":null,"url":null,"abstract":"<div><div>In surgery, bone can be cut by applying force to a wedge-shaped blade. The published literature is relatively sparse regarding the biomechanics of this type of indentation cutting, especially regarding the relationships between blade geometry, bone quality, cutting force and microdamage. Microdamage created near the cut surfaces can be beneficial, as a trigger for bone remodelling, but it is known that excessive fracture damage can prolong the healing time. In this research, specimens of compact bovine bone were tested by cutting using wedge blades of different geometries. We labelled and measured microdamage occurring during bone cutting for the first time. We found that there were statistically significant effects arising from the variation in wedge angle, edge radius and blade orientation (with respect to bone's anisotropic structure) on both the magnitude of the cutting force and the extent of the microdamage. Interestingly, we found that the amount of damage occurring during cutting is directly correlated to the cutting force which causes the damage, independent of other factors. This work contributes to a better understanding of the biomechanics of this important surgical cutting process.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106870"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of cutting forces and microdamage during indentation cutting of bone\",\"authors\":\"Ger Reilly ,&nbsp;David Taylor\",\"doi\":\"10.1016/j.jmbbm.2024.106870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In surgery, bone can be cut by applying force to a wedge-shaped blade. The published literature is relatively sparse regarding the biomechanics of this type of indentation cutting, especially regarding the relationships between blade geometry, bone quality, cutting force and microdamage. Microdamage created near the cut surfaces can be beneficial, as a trigger for bone remodelling, but it is known that excessive fracture damage can prolong the healing time. In this research, specimens of compact bovine bone were tested by cutting using wedge blades of different geometries. We labelled and measured microdamage occurring during bone cutting for the first time. We found that there were statistically significant effects arising from the variation in wedge angle, edge radius and blade orientation (with respect to bone's anisotropic structure) on both the magnitude of the cutting force and the extent of the microdamage. Interestingly, we found that the amount of damage occurring during cutting is directly correlated to the cutting force which causes the damage, independent of other factors. This work contributes to a better understanding of the biomechanics of this important surgical cutting process.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"163 \",\"pages\":\"Article 106870\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124005022\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124005022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在外科手术中,可以通过对楔形刀片施加力来切割骨头。关于这类压痕切割的生物力学,特别是关于刀片几何形状、骨质量、切割力和微损伤之间的关系,已发表的文献相对较少。切面附近产生的微损伤可能是有益的,作为骨重塑的触发因素,但众所周知,过度的骨折损伤会延长愈合时间。在这项研究中,用不同几何形状的楔形刀片对牛骨试样进行了切割测试。我们首次对骨切割过程中发生的微损伤进行了标记和测量。我们发现,楔形角度、边缘半径和刀片方向(相对于骨的各向异性结构)的变化对切削力的大小和微损伤的程度都有统计学上显著的影响。有趣的是,我们发现切削过程中发生的损伤量与造成损伤的切削力直接相关,而不受其他因素的影响。这项工作有助于更好地理解这一重要手术切割过程的生物力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of cutting forces and microdamage during indentation cutting of bone
In surgery, bone can be cut by applying force to a wedge-shaped blade. The published literature is relatively sparse regarding the biomechanics of this type of indentation cutting, especially regarding the relationships between blade geometry, bone quality, cutting force and microdamage. Microdamage created near the cut surfaces can be beneficial, as a trigger for bone remodelling, but it is known that excessive fracture damage can prolong the healing time. In this research, specimens of compact bovine bone were tested by cutting using wedge blades of different geometries. We labelled and measured microdamage occurring during bone cutting for the first time. We found that there were statistically significant effects arising from the variation in wedge angle, edge radius and blade orientation (with respect to bone's anisotropic structure) on both the magnitude of the cutting force and the extent of the microdamage. Interestingly, we found that the amount of damage occurring during cutting is directly correlated to the cutting force which causes the damage, independent of other factors. This work contributes to a better understanding of the biomechanics of this important surgical cutting process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Editorial Board Mechanical modulation of docetaxel-treated bladder cancer cells by various changes in cytoskeletal structures Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy On the repeatability of wrinkling topography patterns in the fingers of water immersed human skin Skeletal impacts of dual in vivo compressive axial tibial and ulnar loading in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1