{"title":"一种新型的双特异性抗il - 17/VEGF融合陷阱对年龄相关性黄斑变性的发展具有有效和持久的抑制作用。","authors":"Lan Deng, Lihua Wang, Yun Meng, Jidai Zheng, Xia Dong, Ying Chen, Haomin Huang","doi":"10.1155/bri/1405338","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is a severe eye disease in people aged 60 years and older. Although anti-VEGF therapies are effective in treating neovascular AMD (NvAMD) in the clinic, up to 60% of patients do not completely respond to the therapies. Recent studies have shown that blood-derived macrophages and their associated proinflammatory cytokines may play important roles in the development of persistent disease and resistance to anti-VEGF therapy. To address this issue, we constructed an antibody-based bispecific fusion protein that can simultaneously inhibit IL-17-induced inflammation and VEGF-mediated neovascularization. As a result, the bispecific fusion protein 17V05 effectively inhibited multiple proinflammatory cytokines and chemokines, as well as laser-induced choroidal neovascularization (CNV). More importantly, 17V05 also exhibited stronger and longer inhibitory effects than conbercept in vivo. Thus, we provide a novel and promising strategy for treating AMD patients who are not sensitive to anti-VEGF therapies.</p>","PeriodicalId":8826,"journal":{"name":"Biochemistry Research International","volume":"2024 ","pages":"1405338"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681983/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Bispecific Anti-IL17/VEGF Fusion Trap Exhibits Potent and Long-Lasting Inhibitory Effects on the Development of Age-Related Macular Degeneration.\",\"authors\":\"Lan Deng, Lihua Wang, Yun Meng, Jidai Zheng, Xia Dong, Ying Chen, Haomin Huang\",\"doi\":\"10.1155/bri/1405338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Age-related macular degeneration (AMD) is a severe eye disease in people aged 60 years and older. Although anti-VEGF therapies are effective in treating neovascular AMD (NvAMD) in the clinic, up to 60% of patients do not completely respond to the therapies. Recent studies have shown that blood-derived macrophages and their associated proinflammatory cytokines may play important roles in the development of persistent disease and resistance to anti-VEGF therapy. To address this issue, we constructed an antibody-based bispecific fusion protein that can simultaneously inhibit IL-17-induced inflammation and VEGF-mediated neovascularization. As a result, the bispecific fusion protein 17V05 effectively inhibited multiple proinflammatory cytokines and chemokines, as well as laser-induced choroidal neovascularization (CNV). More importantly, 17V05 also exhibited stronger and longer inhibitory effects than conbercept in vivo. Thus, we provide a novel and promising strategy for treating AMD patients who are not sensitive to anti-VEGF therapies.</p>\",\"PeriodicalId\":8826,\"journal\":{\"name\":\"Biochemistry Research International\",\"volume\":\"2024 \",\"pages\":\"1405338\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681983/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/bri/1405338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/bri/1405338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Novel Bispecific Anti-IL17/VEGF Fusion Trap Exhibits Potent and Long-Lasting Inhibitory Effects on the Development of Age-Related Macular Degeneration.
Age-related macular degeneration (AMD) is a severe eye disease in people aged 60 years and older. Although anti-VEGF therapies are effective in treating neovascular AMD (NvAMD) in the clinic, up to 60% of patients do not completely respond to the therapies. Recent studies have shown that blood-derived macrophages and their associated proinflammatory cytokines may play important roles in the development of persistent disease and resistance to anti-VEGF therapy. To address this issue, we constructed an antibody-based bispecific fusion protein that can simultaneously inhibit IL-17-induced inflammation and VEGF-mediated neovascularization. As a result, the bispecific fusion protein 17V05 effectively inhibited multiple proinflammatory cytokines and chemokines, as well as laser-induced choroidal neovascularization (CNV). More importantly, 17V05 also exhibited stronger and longer inhibitory effects than conbercept in vivo. Thus, we provide a novel and promising strategy for treating AMD patients who are not sensitive to anti-VEGF therapies.