基于去噪扩散模型的脑MRI无监督异常检测单步采样方法。

IF 3.3 Q2 ENGINEERING, BIOMEDICAL International Journal of Biomedical Imaging Pub Date : 2024-12-19 eCollection Date: 2024-01-01 DOI:10.1155/ijbi/2352602
Mohammed Z Damudi, Anita S Kini
{"title":"基于去噪扩散模型的脑MRI无监督异常检测单步采样方法。","authors":"Mohammed Z Damudi, Anita S Kini","doi":"10.1155/ijbi/2352602","DOIUrl":null,"url":null,"abstract":"<p><p>Generative models, especially diffusion models, have gained traction in image generation for their high-quality image synthesis, surpassing generative adversarial networks (GANs). They have shown to excel in anomaly detection by modeling healthy reference data for scoring anomalies. However, one major disadvantage of these models is its sampling speed, which so far has made it unsuitable for use in time-sensitive scenarios. The time taken to generate a single image using the iterative sampling procedure introduced in denoising diffusion probabilistic model (DDPM) is quite significant. To address this, we propose a novel single-step sampling procedure that hugely improves the sampling speed while generating images of comparable quality. While DDPMs usually denoise images containing pure noise to generate an original image, we utilize a partial diffusion approach to preserve the image structure. In anomaly detection, we want the reconstructed image to have a structure similar to the original anomalous image, so that we can compare the pixel-level difference between them in order to segment the anomaly. The original DDPM algorithm suggests an iterative sampling procedure where the model slowly reduces the noise, until we have a noise-free image. Our single-step sampling approach attempts to remove all the noise in the image within a single step, while still being able to repair the anomaly and achieve comparable results. The output is a binary image showing the predicted anomalous regions, which is then compared to the ground truth to evaluate its segmentation performance. We find that, while it does achieve slightly better anomaly masks, the main improvement is in sampling speed, where our approach was found to perform significantly faster as compared to the iterative procedure. Our work is mainly focused on anomaly detection in brain MR volumes, and therefore, this approach could be used by radiologists in a clinical setting to find anomalies in large quantities of brain MRI.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2024 ","pages":"2352602"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671643/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-Step Sampling Approach for Unsupervised Anomaly Detection of Brain MRI Using Denoising Diffusion Models.\",\"authors\":\"Mohammed Z Damudi, Anita S Kini\",\"doi\":\"10.1155/ijbi/2352602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Generative models, especially diffusion models, have gained traction in image generation for their high-quality image synthesis, surpassing generative adversarial networks (GANs). They have shown to excel in anomaly detection by modeling healthy reference data for scoring anomalies. However, one major disadvantage of these models is its sampling speed, which so far has made it unsuitable for use in time-sensitive scenarios. The time taken to generate a single image using the iterative sampling procedure introduced in denoising diffusion probabilistic model (DDPM) is quite significant. To address this, we propose a novel single-step sampling procedure that hugely improves the sampling speed while generating images of comparable quality. While DDPMs usually denoise images containing pure noise to generate an original image, we utilize a partial diffusion approach to preserve the image structure. In anomaly detection, we want the reconstructed image to have a structure similar to the original anomalous image, so that we can compare the pixel-level difference between them in order to segment the anomaly. The original DDPM algorithm suggests an iterative sampling procedure where the model slowly reduces the noise, until we have a noise-free image. Our single-step sampling approach attempts to remove all the noise in the image within a single step, while still being able to repair the anomaly and achieve comparable results. The output is a binary image showing the predicted anomalous regions, which is then compared to the ground truth to evaluate its segmentation performance. We find that, while it does achieve slightly better anomaly masks, the main improvement is in sampling speed, where our approach was found to perform significantly faster as compared to the iterative procedure. Our work is mainly focused on anomaly detection in brain MR volumes, and therefore, this approach could be used by radiologists in a clinical setting to find anomalies in large quantities of brain MRI.</p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":\"2024 \",\"pages\":\"2352602\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/ijbi/2352602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijbi/2352602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

生成模型,尤其是扩散模型,因其高质量的图像合成而在图像生成领域大受欢迎,超过了生成对抗网络(GANs)。通过对健康参考数据进行建模以对异常情况进行评分,这些模型在异常检测方面表现出色。不过,这些模型的一个主要缺点是采样速度慢,因此不适合用于时间敏感的场景。使用去噪扩散概率模型(DDPM)中引入的迭代采样程序生成单幅图像所需的时间相当长。为了解决这个问题,我们提出了一种新颖的单步采样程序,在生成质量相当的图像的同时大大提高了采样速度。DDPM 通常对包含纯噪声的图像进行去噪处理,生成原始图像,而我们则利用部分扩散方法来保留图像结构。在异常检测中,我们希望重建的图像具有与原始异常图像相似的结构,这样我们就可以比较它们之间的像素级差异,从而分割异常图像。最初的 DDPM 算法建议采用迭代采样程序,在该程序中,模型会缓慢降低噪声,直到我们获得无噪声图像。我们的单步采样方法试图在单步内去除图像中的所有噪声,同时还能修复异常点,并获得相似的结果。输出结果是显示预测异常区域的二值图像,然后将其与地面实况进行比较,以评估其分割性能。我们发现,虽然它的异常掩码效果略好,但主要改进在于采样速度,与迭代程序相比,我们的方法明显更快。我们的工作主要集中在脑部核磁共振成像体积的异常检测上,因此,放射科医生可以在临床环境中使用这种方法来发现大量脑部核磁共振成像中的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-Step Sampling Approach for Unsupervised Anomaly Detection of Brain MRI Using Denoising Diffusion Models.

Generative models, especially diffusion models, have gained traction in image generation for their high-quality image synthesis, surpassing generative adversarial networks (GANs). They have shown to excel in anomaly detection by modeling healthy reference data for scoring anomalies. However, one major disadvantage of these models is its sampling speed, which so far has made it unsuitable for use in time-sensitive scenarios. The time taken to generate a single image using the iterative sampling procedure introduced in denoising diffusion probabilistic model (DDPM) is quite significant. To address this, we propose a novel single-step sampling procedure that hugely improves the sampling speed while generating images of comparable quality. While DDPMs usually denoise images containing pure noise to generate an original image, we utilize a partial diffusion approach to preserve the image structure. In anomaly detection, we want the reconstructed image to have a structure similar to the original anomalous image, so that we can compare the pixel-level difference between them in order to segment the anomaly. The original DDPM algorithm suggests an iterative sampling procedure where the model slowly reduces the noise, until we have a noise-free image. Our single-step sampling approach attempts to remove all the noise in the image within a single step, while still being able to repair the anomaly and achieve comparable results. The output is a binary image showing the predicted anomalous regions, which is then compared to the ground truth to evaluate its segmentation performance. We find that, while it does achieve slightly better anomaly masks, the main improvement is in sampling speed, where our approach was found to perform significantly faster as compared to the iterative procedure. Our work is mainly focused on anomaly detection in brain MR volumes, and therefore, this approach could be used by radiologists in a clinical setting to find anomalies in large quantities of brain MRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
期刊最新文献
Qualitative and Quantitative Evaluation of the Image Quality of MDCT Multiphasic Liver Scans in HCC Patients. Single-Step Sampling Approach for Unsupervised Anomaly Detection of Brain MRI Using Denoising Diffusion Models. Simple Imaging System for Label-Free Identification of Bacterial Pathogens in Resource-Limited Settings. Noninvasive Assessment of Cardiopulmonary Hemodynamics Using Cardiovascular Magnetic Resonance Pulmonary Transit Time. Comparison of 3D Gradient-Echo Versus 2D Sequences for Assessing Shoulder Joint Image Quality in MRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1