SeqLengthPlot v2.0:一款一体化的易用工具,用于从 FASTA 文件中可视化和检索序列长度。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-11-20 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae183
Dany Domínguez-Pérez, Guillermin Agüero-Chapin, Serena Leone, Maria Vittoria Modica
{"title":"SeqLengthPlot v2.0:一款一体化的易用工具,用于从 FASTA 文件中可视化和检索序列长度。","authors":"Dany Domínguez-Pérez, Guillermin Agüero-Chapin, Serena Leone, Maria Vittoria Modica","doi":"10.1093/bioadv/vbae183","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Accurate sequence length profiling is essential in bioinformatics, particularly in genomics and proteomics. Existing tools like SeqKit and the Trinity toolkit provide basic sequence statistics but often fall short in offering comprehensive analytics and plotting options. For instance, SeqKit is a very complete and fast tool for sequence analysis, delivering useful metrics (e.g. number of sequences, average, minimum, and maximum lengths) and can return sequences either shorter or longer (but not both at once) for a given length. Similarly, Trinity's Perl-based scripts provide detailed contig length distributions (e.g. N50, median, and average lengths) but do not include the total number of sequences or offer graphical representations of the data.</p><p><strong>Results: </strong>Given that key sequence analysis tasks are often distributed across multiple tools, we introduce <b>SeqLengthPlot v2.0</b>, an all-in-one, easy-to-use Python-based tool. Through a simple command-line interface, this straightforward tool enables users to split input FASTA files (nucleotide and protein) into two distinct files based on a customizable sequence length cutoff. It also automatically retrieves the resulting FASTA files, generates length distribution plots, and provides comprehensive statistical summaries.</p><p><strong>Availability and implementation: </strong>SeqLengthPlot_v2.0.2 can be accessed at https://github.com/danydguezperez/SeqLengthPlot/releases/tag/v2.0.2.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae183"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671033/pdf/","citationCount":"0","resultStr":"{\"title\":\"SeqLengthPlot v2.0: an all-in-one, easy-to-use tool for visualizing and retrieving sequence lengths from FASTA files.\",\"authors\":\"Dany Domínguez-Pérez, Guillermin Agüero-Chapin, Serena Leone, Maria Vittoria Modica\",\"doi\":\"10.1093/bioadv/vbae183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Accurate sequence length profiling is essential in bioinformatics, particularly in genomics and proteomics. Existing tools like SeqKit and the Trinity toolkit provide basic sequence statistics but often fall short in offering comprehensive analytics and plotting options. For instance, SeqKit is a very complete and fast tool for sequence analysis, delivering useful metrics (e.g. number of sequences, average, minimum, and maximum lengths) and can return sequences either shorter or longer (but not both at once) for a given length. Similarly, Trinity's Perl-based scripts provide detailed contig length distributions (e.g. N50, median, and average lengths) but do not include the total number of sequences or offer graphical representations of the data.</p><p><strong>Results: </strong>Given that key sequence analysis tasks are often distributed across multiple tools, we introduce <b>SeqLengthPlot v2.0</b>, an all-in-one, easy-to-use Python-based tool. Through a simple command-line interface, this straightforward tool enables users to split input FASTA files (nucleotide and protein) into two distinct files based on a customizable sequence length cutoff. It also automatically retrieves the resulting FASTA files, generates length distribution plots, and provides comprehensive statistical summaries.</p><p><strong>Availability and implementation: </strong>SeqLengthPlot_v2.0.2 can be accessed at https://github.com/danydguezperez/SeqLengthPlot/releases/tag/v2.0.2.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbae183\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671033/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:准确的序列长度分析在生物信息学,特别是基因组学和蛋白质组学中是必不可少的。现有的工具,如SeqKit和Trinity工具包,提供基本的序列统计,但往往不能提供全面的分析和绘图选项。例如,SeqKit是一个非常完整和快速的序列分析工具,提供有用的指标(例如序列数量,平均,最小和最大长度),并且可以返回给定长度的序列或短或长(但不是同时返回)。类似地,Trinity的基于perl的脚本提供了详细的组长度分布(例如N50、中位数和平均长度),但不包括序列的总数或提供数据的图形表示。结果:考虑到关键序列分析任务通常分布在多个工具之间,我们介绍了SeqLengthPlot v2.0,这是一个集所有功能于一体、易于使用的基于python的工具。通过一个简单的命令行界面,这个简单的工具使用户能够根据可定制的序列长度截断将输入FASTA文件(核苷酸和蛋白质)拆分为两个不同的文件。它还自动检索结果FASTA文件,生成长度分布图,并提供全面的统计摘要。可用性和实现:可通过https://github.com/danydguezperez/SeqLengthPlot/releases/tag/v2.0.2访问SeqLengthPlot_v2.0.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SeqLengthPlot v2.0: an all-in-one, easy-to-use tool for visualizing and retrieving sequence lengths from FASTA files.

Motivation: Accurate sequence length profiling is essential in bioinformatics, particularly in genomics and proteomics. Existing tools like SeqKit and the Trinity toolkit provide basic sequence statistics but often fall short in offering comprehensive analytics and plotting options. For instance, SeqKit is a very complete and fast tool for sequence analysis, delivering useful metrics (e.g. number of sequences, average, minimum, and maximum lengths) and can return sequences either shorter or longer (but not both at once) for a given length. Similarly, Trinity's Perl-based scripts provide detailed contig length distributions (e.g. N50, median, and average lengths) but do not include the total number of sequences or offer graphical representations of the data.

Results: Given that key sequence analysis tasks are often distributed across multiple tools, we introduce SeqLengthPlot v2.0, an all-in-one, easy-to-use Python-based tool. Through a simple command-line interface, this straightforward tool enables users to split input FASTA files (nucleotide and protein) into two distinct files based on a customizable sequence length cutoff. It also automatically retrieves the resulting FASTA files, generates length distribution plots, and provides comprehensive statistical summaries.

Availability and implementation: SeqLengthPlot_v2.0.2 can be accessed at https://github.com/danydguezperez/SeqLengthPlot/releases/tag/v2.0.2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Imputation for Lipidomics and Metabolomics (ImpLiMet): a web-based application for optimization and method selection for missing data imputation. estiMAge: development of a DNA methylation clock to estimate the methylation age of single cells. Integrative co-registration of elemental imaging and histopathology for enhanced spatial multimodal analysis of tissue sections through TRACE. Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1