由 CoTe@CoFeTe 双壳纳米立方体实现的高性能混合超级电容器

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-12-30 DOI:10.1039/d4nr03996c
Helya Gholami Shamami, Akbar Mohammadi Zardkhoshoui, Saied Saeed Hosseiny Davarani
{"title":"由 CoTe@CoFeTe 双壳纳米立方体实现的高性能混合超级电容器","authors":"Helya Gholami Shamami, Akbar Mohammadi Zardkhoshoui, Saied Saeed Hosseiny Davarani","doi":"10.1039/d4nr03996c","DOIUrl":null,"url":null,"abstract":"Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework-hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)6]3− ions. Subsequent annealing treatment converts these structures into Co3O4@CoFe2O4 double-shelled nanocubes. These are then subjected to a tellurization process to form the CoTe@CoFeTe, which exhibits outstanding supercapacitive performance. Notably, the CoTe@CoFeTe based-electrode demonstrates superior supercapacitive properties compared to their oxide counterparts, mainly due to the introduction of tellurium ions. These nanocubes show an impressive specific capacity of 1312 C g−1 at a current density of 1 A g−1 and maintain 92.35% of their capacity after 10000 charging cycles, highlighting their durability and the synergistic effect of the mixed metals and their hollow structure. Furthermore, when used as the positive electrode material in a hybrid supercapacitor with activated carbon (AC), the device achieves an energy density of 64.66 Wh kg−1 and retain 88.25% of their capacity after 10000 cycles. These results confirm the potential of the developed material for advanced supercapacitor applications.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"37 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance hybrid supercapacitors enabled by CoTe@CoFeTe double-shelled nanocubes\",\"authors\":\"Helya Gholami Shamami, Akbar Mohammadi Zardkhoshoui, Saied Saeed Hosseiny Davarani\",\"doi\":\"10.1039/d4nr03996c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework-hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)6]3− ions. Subsequent annealing treatment converts these structures into Co3O4@CoFe2O4 double-shelled nanocubes. These are then subjected to a tellurization process to form the CoTe@CoFeTe, which exhibits outstanding supercapacitive performance. Notably, the CoTe@CoFeTe based-electrode demonstrates superior supercapacitive properties compared to their oxide counterparts, mainly due to the introduction of tellurium ions. These nanocubes show an impressive specific capacity of 1312 C g−1 at a current density of 1 A g−1 and maintain 92.35% of their capacity after 10000 charging cycles, highlighting their durability and the synergistic effect of the mixed metals and their hollow structure. Furthermore, when used as the positive electrode material in a hybrid supercapacitor with activated carbon (AC), the device achieves an energy density of 64.66 Wh kg−1 and retain 88.25% of their capacity after 10000 cycles. These results confirm the potential of the developed material for advanced supercapacitor applications.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nr03996c\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03996c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-performance hybrid supercapacitors enabled by CoTe@CoFeTe double-shelled nanocubes
Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework-hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)6]3− ions. Subsequent annealing treatment converts these structures into Co3O4@CoFe2O4 double-shelled nanocubes. These are then subjected to a tellurization process to form the CoTe@CoFeTe, which exhibits outstanding supercapacitive performance. Notably, the CoTe@CoFeTe based-electrode demonstrates superior supercapacitive properties compared to their oxide counterparts, mainly due to the introduction of tellurium ions. These nanocubes show an impressive specific capacity of 1312 C g−1 at a current density of 1 A g−1 and maintain 92.35% of their capacity after 10000 charging cycles, highlighting their durability and the synergistic effect of the mixed metals and their hollow structure. Furthermore, when used as the positive electrode material in a hybrid supercapacitor with activated carbon (AC), the device achieves an energy density of 64.66 Wh kg−1 and retain 88.25% of their capacity after 10000 cycles. These results confirm the potential of the developed material for advanced supercapacitor applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Boosting Cu Ions Capture in High-Salinity Environments with Amino-Functionalized Millispheres Nanostructure Engineering for Ferroelectric Photovoltaics Molecular Mechanisms behind the Anti Corona Virus Activity of Small Metal Oxide Nanoparticles Mixed Metal Halide Perovskite CsPb1-xSnxBr3 Quantum Dots: Insight into Photophysics from Photoblinking Studies Microfluidic-assisted Sol-gel Preparation of Monodisperse Mesoporous Silica Microspheres with Controlled Size, Surface Morphology, Porosity and Stiffness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1