{"title":"可变形多孔介质局部化和不稳定性的计算大变形塑性周孔隙力学","authors":"Xiaoyu Song, Hossein Pashazad, Andrew J. Whittle","doi":"10.1002/nag.3920","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, we formulate a computational large-deformation-plasticity (LDP) periporomechanics (PPM) paradigm through a multiplicative decomposition of the deformation gradient following the notion of an intermediate stress-free configuration. PPM is a nonlocal meshless formulation of poromechanics for deformable porous media through integral equations in which a porous material is represented by mixed material points with nonlocal poromechanical interactions. Advanced constitutive models can be readily integrated within the PPM framework. In this paper, we implement a linearly elastoplastic model with Drucker–Prager yield and post-peak strain softening (loss of cohesion). This is accomplished using the multiplicative decomposition of the nonlocal deformation gradient and the return mapping algorithm for LDP. The paper presents a series of numerical examples that illustrate the capabilities of PPM to simulate the development of shear bands, large plastic deformations, and progressive slope failure mechanisms. We also demonstrate that the PPM results are robust and stable to the material point density (grid spacing). We illustrate the complex retrogressive failure observed in sensitive St. Monique clay that was triggered by toe erosion. The PPM analysis captures the distribution of horst and graben structures that were observed in the failed clay mass.</p></div>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"49 4","pages":"1278-1298"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Large-Deformation-Plasticity Periporomechanics for Localization and Instability in Deformable Porous Media\",\"authors\":\"Xiaoyu Song, Hossein Pashazad, Andrew J. Whittle\",\"doi\":\"10.1002/nag.3920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this article, we formulate a computational large-deformation-plasticity (LDP) periporomechanics (PPM) paradigm through a multiplicative decomposition of the deformation gradient following the notion of an intermediate stress-free configuration. PPM is a nonlocal meshless formulation of poromechanics for deformable porous media through integral equations in which a porous material is represented by mixed material points with nonlocal poromechanical interactions. Advanced constitutive models can be readily integrated within the PPM framework. In this paper, we implement a linearly elastoplastic model with Drucker–Prager yield and post-peak strain softening (loss of cohesion). This is accomplished using the multiplicative decomposition of the nonlocal deformation gradient and the return mapping algorithm for LDP. The paper presents a series of numerical examples that illustrate the capabilities of PPM to simulate the development of shear bands, large plastic deformations, and progressive slope failure mechanisms. We also demonstrate that the PPM results are robust and stable to the material point density (grid spacing). We illustrate the complex retrogressive failure observed in sensitive St. Monique clay that was triggered by toe erosion. The PPM analysis captures the distribution of horst and graben structures that were observed in the failed clay mass.</p></div>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"49 4\",\"pages\":\"1278-1298\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3920\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3920","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Computational Large-Deformation-Plasticity Periporomechanics for Localization and Instability in Deformable Porous Media
In this article, we formulate a computational large-deformation-plasticity (LDP) periporomechanics (PPM) paradigm through a multiplicative decomposition of the deformation gradient following the notion of an intermediate stress-free configuration. PPM is a nonlocal meshless formulation of poromechanics for deformable porous media through integral equations in which a porous material is represented by mixed material points with nonlocal poromechanical interactions. Advanced constitutive models can be readily integrated within the PPM framework. In this paper, we implement a linearly elastoplastic model with Drucker–Prager yield and post-peak strain softening (loss of cohesion). This is accomplished using the multiplicative decomposition of the nonlocal deformation gradient and the return mapping algorithm for LDP. The paper presents a series of numerical examples that illustrate the capabilities of PPM to simulate the development of shear bands, large plastic deformations, and progressive slope failure mechanisms. We also demonstrate that the PPM results are robust and stable to the material point density (grid spacing). We illustrate the complex retrogressive failure observed in sensitive St. Monique clay that was triggered by toe erosion. The PPM analysis captures the distribution of horst and graben structures that were observed in the failed clay mass.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.