干旱加剧可能威胁植物防御多态性的维持

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2024-12-31 DOI:10.1111/ele.70039
Lauren N. Carley, Tom Mitchell-Olds, William F. Morris
{"title":"干旱加剧可能威胁植物防御多态性的维持","authors":"Lauren N. Carley,&nbsp;Tom Mitchell-Olds,&nbsp;William F. Morris","doi":"10.1111/ele.70039","DOIUrl":null,"url":null,"abstract":"<p>It is unclear how environmental change influences standing genetic variation in wild populations. Here, we characterised environmental conditions that protect versus erode polymorphic chemical defences in <i>Boechera stricta</i> (Brassicaceae), a short-lived perennial wildflower. By manipulating drought and herbivory in a 4-year field experiment, we measured the effects of driver variation on vital rates of genotypes varying in defence chemistry and then assessed interacting driver effects on total fitness (estimated as each genotype's lineage growth rate, <i>λ</i>) using demographic models. Drought and herbivory interacted to shape vital rates, but contrasting defence genotypes had equivalent total fitness in many environments. Defence polymorphism thus may persist under a range of conditions; however, ambient field conditions fall close to the boundary of putatively polymorphic environment space, and increasing aridity may drive populations to monomorphism. Consequently, elevated intensity and/or frequency of drought under climate change may erode genetic variation for defence chemistry in <i>B. stricta</i>.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70039","citationCount":"0","resultStr":"{\"title\":\"Increasing Aridity May Threaten the Maintenance of a Plant Defence Polymorphism\",\"authors\":\"Lauren N. Carley,&nbsp;Tom Mitchell-Olds,&nbsp;William F. Morris\",\"doi\":\"10.1111/ele.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is unclear how environmental change influences standing genetic variation in wild populations. Here, we characterised environmental conditions that protect versus erode polymorphic chemical defences in <i>Boechera stricta</i> (Brassicaceae), a short-lived perennial wildflower. By manipulating drought and herbivory in a 4-year field experiment, we measured the effects of driver variation on vital rates of genotypes varying in defence chemistry and then assessed interacting driver effects on total fitness (estimated as each genotype's lineage growth rate, <i>λ</i>) using demographic models. Drought and herbivory interacted to shape vital rates, but contrasting defence genotypes had equivalent total fitness in many environments. Defence polymorphism thus may persist under a range of conditions; however, ambient field conditions fall close to the boundary of putatively polymorphic environment space, and increasing aridity may drive populations to monomorphism. Consequently, elevated intensity and/or frequency of drought under climate change may erode genetic variation for defence chemistry in <i>B. stricta</i>.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.70039\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70039","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前尚不清楚环境变化如何影响野生种群的遗传变异。在这里,我们描述了环境条件,保护与侵蚀多态化学防御Boechera stricta(芸苔科),一个短寿的多年生野花。在一项为期4年的田间试验中,通过控制干旱和草食,我们测量了驱动因素变化对不同防御化学基因型的重要率的影响,然后利用人口统计学模型评估了相互作用的驱动因素对总适合度的影响(估计为每种基因型的谱系生长速率λ)。干旱和草食相互作用形成了生命率,但不同的防御基因型在许多环境中具有相同的总适应性。因此,防御多态性可能在一系列条件下持续存在;然而,野外环境条件接近假定的多态环境空间的边界,干旱的增加可能导致种群向单态发展。因此,在气候变化条件下,干旱强度和/或频率的增加可能会侵蚀狭叶藻防御化学的遗传变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increasing Aridity May Threaten the Maintenance of a Plant Defence Polymorphism

It is unclear how environmental change influences standing genetic variation in wild populations. Here, we characterised environmental conditions that protect versus erode polymorphic chemical defences in Boechera stricta (Brassicaceae), a short-lived perennial wildflower. By manipulating drought and herbivory in a 4-year field experiment, we measured the effects of driver variation on vital rates of genotypes varying in defence chemistry and then assessed interacting driver effects on total fitness (estimated as each genotype's lineage growth rate, λ) using demographic models. Drought and herbivory interacted to shape vital rates, but contrasting defence genotypes had equivalent total fitness in many environments. Defence polymorphism thus may persist under a range of conditions; however, ambient field conditions fall close to the boundary of putatively polymorphic environment space, and increasing aridity may drive populations to monomorphism. Consequently, elevated intensity and/or frequency of drought under climate change may erode genetic variation for defence chemistry in B. stricta.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
Regional Processes Mediate Ecological Selection and the Distribution of Plant Diversity Across Scales Issue Information Estimating Spatially Explicit Survival and Mortality Risk From Telemetry Data With Thinned Point Process Models Residence Time Structures Microbial Communities Through Niche Partitioning Plant Species Better Adapted to Climate Change Need Agricultural Extensification to Persist
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1