{"title":"人工智能在大气污染监测与预报中的应用综述","authors":"Sreeni Chadalavada , Oliver Faust , Massimo Salvi , Silvia Seoni , Nawin Raj , U. Raghavendra , Anjan Gudigar , Prabal Datta Barua , Filippo Molinari , Rajendra Acharya","doi":"10.1016/j.envsoft.2024.106312","DOIUrl":null,"url":null,"abstract":"<div><div>Air pollution poses a significant global health hazard. Effective monitoring and predicting air pollutant concentrations are crucial for managing associated health risks. Recent advancements in Artificial Intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), offer the potential for more precise air pollution monitoring and forecasting models. This comprehensive review, conducted according to PRISMA guidelines, analyzed 65 high-quality Q1 journal articles to uncover current trends, challenges, and future AI applications in this field. The review revealed a significant increase in research papers utilizing ML and DL approaches from 2021 onwards. ML techniques currently dominate, with Random Forest being the most frequent method, achieving up to 98.2% accuracy. DL techniques show promise in capturing complex spatiotemporal relationships in air quality data. The study highlighted the importance of integrating diverse data sources to improve model accuracy. Future research should focus on addressing challenges in model interpretability and uncertainty quantification.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106312"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of artificial intelligence in air pollution monitoring and forecasting: A systematic review\",\"authors\":\"Sreeni Chadalavada , Oliver Faust , Massimo Salvi , Silvia Seoni , Nawin Raj , U. Raghavendra , Anjan Gudigar , Prabal Datta Barua , Filippo Molinari , Rajendra Acharya\",\"doi\":\"10.1016/j.envsoft.2024.106312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Air pollution poses a significant global health hazard. Effective monitoring and predicting air pollutant concentrations are crucial for managing associated health risks. Recent advancements in Artificial Intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), offer the potential for more precise air pollution monitoring and forecasting models. This comprehensive review, conducted according to PRISMA guidelines, analyzed 65 high-quality Q1 journal articles to uncover current trends, challenges, and future AI applications in this field. The review revealed a significant increase in research papers utilizing ML and DL approaches from 2021 onwards. ML techniques currently dominate, with Random Forest being the most frequent method, achieving up to 98.2% accuracy. DL techniques show promise in capturing complex spatiotemporal relationships in air quality data. The study highlighted the importance of integrating diverse data sources to improve model accuracy. Future research should focus on addressing challenges in model interpretability and uncertainty quantification.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"185 \",\"pages\":\"Article 106312\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224003736\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003736","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Application of artificial intelligence in air pollution monitoring and forecasting: A systematic review
Air pollution poses a significant global health hazard. Effective monitoring and predicting air pollutant concentrations are crucial for managing associated health risks. Recent advancements in Artificial Intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), offer the potential for more precise air pollution monitoring and forecasting models. This comprehensive review, conducted according to PRISMA guidelines, analyzed 65 high-quality Q1 journal articles to uncover current trends, challenges, and future AI applications in this field. The review revealed a significant increase in research papers utilizing ML and DL approaches from 2021 onwards. ML techniques currently dominate, with Random Forest being the most frequent method, achieving up to 98.2% accuracy. DL techniques show promise in capturing complex spatiotemporal relationships in air quality data. The study highlighted the importance of integrating diverse data sources to improve model accuracy. Future research should focus on addressing challenges in model interpretability and uncertainty quantification.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.