时序深度学习框架中使用卷积神经网络的时空洪水深度和速度动态

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2025-02-01 DOI:10.1016/j.envsoft.2024.106307
Mohamed M. Fathi , Zihan Liu , Anjali M. Fernandes , Michael T. Hren , Dennis O. Terry , C. Nataraj , Virginia Smith
{"title":"时序深度学习框架中使用卷积神经网络的时空洪水深度和速度动态","authors":"Mohamed M. Fathi ,&nbsp;Zihan Liu ,&nbsp;Anjali M. Fernandes ,&nbsp;Michael T. Hren ,&nbsp;Dennis O. Terry ,&nbsp;C. Nataraj ,&nbsp;Virginia Smith","doi":"10.1016/j.envsoft.2024.106307","DOIUrl":null,"url":null,"abstract":"<div><div>Computational hydrodynamic models support river science and management. However, current physics-based models face computational challenges; they require extensive processing time for large-scale two-dimensional flood simulations. Despite the success of Deep Learning (DL) applications in generating inundation maps, accurate prediction of unsteady flood hydrodynamic maps remains challenging. This paper compares traditional approaches to a novel DL approach, which integrates convolutional neural networks with long short-term memory, to deliver precise, rapid, and continuous simulation of the spatiotemporal dynamics of river floods. This is the first DL framework able to generate essential hydrodynamic variables: water depth, velocity magnitude, and flow direction maps. Water depth and velocity magnitude predictions across the testing dataset are robust, with average RMSE of 0.14 m and 0.02 m/s, respectively. The DL predictions are 415 times faster compared to traditional computational approaches, representing a paradigm shift in hydrodynamics modeling that advances long-term flood simulations and resilient river management.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106307"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal flood depth and velocity dynamics using a convolutional neural network within a sequential Deep-Learning framework\",\"authors\":\"Mohamed M. Fathi ,&nbsp;Zihan Liu ,&nbsp;Anjali M. Fernandes ,&nbsp;Michael T. Hren ,&nbsp;Dennis O. Terry ,&nbsp;C. Nataraj ,&nbsp;Virginia Smith\",\"doi\":\"10.1016/j.envsoft.2024.106307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Computational hydrodynamic models support river science and management. However, current physics-based models face computational challenges; they require extensive processing time for large-scale two-dimensional flood simulations. Despite the success of Deep Learning (DL) applications in generating inundation maps, accurate prediction of unsteady flood hydrodynamic maps remains challenging. This paper compares traditional approaches to a novel DL approach, which integrates convolutional neural networks with long short-term memory, to deliver precise, rapid, and continuous simulation of the spatiotemporal dynamics of river floods. This is the first DL framework able to generate essential hydrodynamic variables: water depth, velocity magnitude, and flow direction maps. Water depth and velocity magnitude predictions across the testing dataset are robust, with average RMSE of 0.14 m and 0.02 m/s, respectively. The DL predictions are 415 times faster compared to traditional computational approaches, representing a paradigm shift in hydrodynamics modeling that advances long-term flood simulations and resilient river management.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"185 \",\"pages\":\"Article 106307\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224003682\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003682","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

计算水动力模型支持河流科学和管理。然而,目前基于物理的模型面临着计算方面的挑战;大规模二维洪水模拟需要大量的处理时间。尽管深度学习(DL)在生成淹没图方面取得了成功,但准确预测非定常洪水水动力图仍然具有挑战性。本文将传统方法与一种新颖的深度学习方法进行了比较,该方法将卷积神经网络与长短期记忆相结合,以提供精确、快速和连续的河流洪水时空动态模拟。这是第一个能够生成基本流体动力学变量的深度学习框架:水深、速度大小和流向图。整个测试数据集的水深和速度大小预测非常稳健,平均RMSE分别为0.14 m和0.02 m/s。与传统计算方法相比,DL预测速度快415倍,代表了水动力学建模的范式转变,推动了长期洪水模拟和弹性河流管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal flood depth and velocity dynamics using a convolutional neural network within a sequential Deep-Learning framework
Computational hydrodynamic models support river science and management. However, current physics-based models face computational challenges; they require extensive processing time for large-scale two-dimensional flood simulations. Despite the success of Deep Learning (DL) applications in generating inundation maps, accurate prediction of unsteady flood hydrodynamic maps remains challenging. This paper compares traditional approaches to a novel DL approach, which integrates convolutional neural networks with long short-term memory, to deliver precise, rapid, and continuous simulation of the spatiotemporal dynamics of river floods. This is the first DL framework able to generate essential hydrodynamic variables: water depth, velocity magnitude, and flow direction maps. Water depth and velocity magnitude predictions across the testing dataset are robust, with average RMSE of 0.14 m and 0.02 m/s, respectively. The DL predictions are 415 times faster compared to traditional computational approaches, representing a paradigm shift in hydrodynamics modeling that advances long-term flood simulations and resilient river management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Hybrid cellular automata-based air pollution model for traffic scenario microsimulations PSLSA v2.0: An automatic Python package integrating machine learning models for regional landslide susceptibility assessment Spatiotemporal PM2.5 forecasting via dynamic geographical Graph Neural Network ExMAD (Expert-based Multitemporal AI Detector): An open-source methodological framework for remote and field landslide inventory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1