TES微热量计增益跳变的检测与校正

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Applied Superconductivity Pub Date : 2024-12-16 DOI:10.1109/TASC.2024.3517565
Thomas A. Baker;Daniel T. Becker;Joseph W. Fowler;Mark W. Keller;Daniel S. Swetz;Joel N. Ullom
{"title":"TES微热量计增益跳变的检测与校正","authors":"Thomas A. Baker;Daniel T. Becker;Joseph W. Fowler;Mark W. Keller;Daniel S. Swetz;Joel N. Ullom","doi":"10.1109/TASC.2024.3517565","DOIUrl":null,"url":null,"abstract":"Arrays of microcalorimeters based on transition-edge sensors (TESs) are being actively deployed to laboratories all over the world. A TES microcalorimeter array produces very large quantities of data and users of these devices have varying levels of experience, so it is important to provide robust software for data acquisition and analysis that can function with minimal user supervision. This software should be capable of addressing common phenomena that can adversely affect spectrum quality. Gain jumping is one such phenomenon that is characterized by abrupt changes in the gain of a device. Left unaddressed, gain jumps can degrade spectra by introducing false peaks. We are not aware of any previously published methods for resetting gain jumps during data acquisition or existing algorithms for correcting data that is degraded by gain jumps. We have developed automated methods for detecting and correcting gain jumps in gamma-ray TES microcalorimeters. We present a procedure for resetting gain jumps during a live data acquisition that involves briefly driving the TES into its normal state using the bias current. We also describe an algorithm for locating gain jumps and identifying unique gain states within existing microcalorimeter data. Finally, we provide a possible approach for correcting gain jumps after they have been identified.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting and Correcting Gain Jumps in TES Microcalorimeters\",\"authors\":\"Thomas A. Baker;Daniel T. Becker;Joseph W. Fowler;Mark W. Keller;Daniel S. Swetz;Joel N. Ullom\",\"doi\":\"10.1109/TASC.2024.3517565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arrays of microcalorimeters based on transition-edge sensors (TESs) are being actively deployed to laboratories all over the world. A TES microcalorimeter array produces very large quantities of data and users of these devices have varying levels of experience, so it is important to provide robust software for data acquisition and analysis that can function with minimal user supervision. This software should be capable of addressing common phenomena that can adversely affect spectrum quality. Gain jumping is one such phenomenon that is characterized by abrupt changes in the gain of a device. Left unaddressed, gain jumps can degrade spectra by introducing false peaks. We are not aware of any previously published methods for resetting gain jumps during data acquisition or existing algorithms for correcting data that is degraded by gain jumps. We have developed automated methods for detecting and correcting gain jumps in gamma-ray TES microcalorimeters. We present a procedure for resetting gain jumps during a live data acquisition that involves briefly driving the TES into its normal state using the bias current. We also describe an algorithm for locating gain jumps and identifying unique gain states within existing microcalorimeter data. Finally, we provide a possible approach for correcting gain jumps after they have been identified.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"35 5\",\"pages\":\"1-5\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10803563/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10803563/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于过渡边缘传感器(TESs)的微热计阵列正被积极地部署到世界各地的实验室。TES微热计阵列产生非常大量的数据,这些设备的用户具有不同程度的经验,因此提供强大的数据采集和分析软件非常重要,这些软件可以在最小的用户监督下运行。该软件应该能够解决可能对频谱质量产生不利影响的常见现象。增益跳变就是这样一种现象,其特征是器件增益的突然变化。如果不进行寻址,增益跳变会通过引入假峰而降低光谱。我们不知道任何先前发表的在数据采集期间重置增益跳变的方法或用于纠正因增益跳变而退化的数据的现有算法。我们已经开发了自动化的方法来检测和纠正伽马射线TES微热量计的增益跳变。我们提出了一种在实时数据采集过程中重置增益跳变的方法,该方法涉及使用偏置电流短暂地将TES驱动到正常状态。我们还描述了一种在现有微热量计数据中定位增益跳跃和识别唯一增益状态的算法。最后,我们提供了一种可能的方法来纠正增益跳变后,他们已经确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting and Correcting Gain Jumps in TES Microcalorimeters
Arrays of microcalorimeters based on transition-edge sensors (TESs) are being actively deployed to laboratories all over the world. A TES microcalorimeter array produces very large quantities of data and users of these devices have varying levels of experience, so it is important to provide robust software for data acquisition and analysis that can function with minimal user supervision. This software should be capable of addressing common phenomena that can adversely affect spectrum quality. Gain jumping is one such phenomenon that is characterized by abrupt changes in the gain of a device. Left unaddressed, gain jumps can degrade spectra by introducing false peaks. We are not aware of any previously published methods for resetting gain jumps during data acquisition or existing algorithms for correcting data that is degraded by gain jumps. We have developed automated methods for detecting and correcting gain jumps in gamma-ray TES microcalorimeters. We present a procedure for resetting gain jumps during a live data acquisition that involves briefly driving the TES into its normal state using the bias current. We also describe an algorithm for locating gain jumps and identifying unique gain states within existing microcalorimeter data. Finally, we provide a possible approach for correcting gain jumps after they have been identified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
期刊最新文献
A High-Speed, High-Resolution Transition Edge Sensor Spectrometer for Soft X-Rays at the Advanced Photon Source Design and Analysis of Short Period 2G-HTS Undulators 2024 Index IEEE Transactions on Applied Superconductivity Vol. 34 Clocked Gate Reduction With Clockless Gates in Technology Mapping for RSFQ Logic Circuits A Conical Accelerator Magnet With Unique CCT Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1