基于HTS输入匹配网络的灰狼优化低温c波段混合MMIC低噪声放大器

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Applied Superconductivity Pub Date : 2024-12-11 DOI:10.1109/TASC.2024.3514608
Hongliang Tian;Haiwen Liu;Zeren Song;Yulian Xu;Ruolin Wang;Shaofei Wang
{"title":"基于HTS输入匹配网络的灰狼优化低温c波段混合MMIC低噪声放大器","authors":"Hongliang Tian;Haiwen Liu;Zeren Song;Yulian Xu;Ruolin Wang;Shaofei Wang","doi":"10.1109/TASC.2024.3514608","DOIUrl":null,"url":null,"abstract":"In this article, a cryogenic 4–8-GHz hybrid monolithic microwave integrated circuit (MMIC) low-noise amplifier (LNA), enhanced with an external high-temperature superconductor (HTS) impedance matching network (IMN), is proposed. It evolves from a reference InP MMIC LNA by substituting the on-chip IMN with an external HTS IMN, facilitating seamless integration with superconductor circuit units. The Gray Wolf Optimization algorithm is utilized to optimize the IMN. Compared with the reference MMIC LNA, the hybrid MMIC LNA exhibits an average noise reduction of approximately 5.2 K at 77 K and 1.9 K at 15 K during testing. These results make it a promising candidate for applications in superconductor receivers.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 2","pages":"1-7"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryogenic C-Band Hybrid MMIC Low-Noise Amplifier Using HTS Input Matching Network Assisted by Gray Wolf Optimizer\",\"authors\":\"Hongliang Tian;Haiwen Liu;Zeren Song;Yulian Xu;Ruolin Wang;Shaofei Wang\",\"doi\":\"10.1109/TASC.2024.3514608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a cryogenic 4–8-GHz hybrid monolithic microwave integrated circuit (MMIC) low-noise amplifier (LNA), enhanced with an external high-temperature superconductor (HTS) impedance matching network (IMN), is proposed. It evolves from a reference InP MMIC LNA by substituting the on-chip IMN with an external HTS IMN, facilitating seamless integration with superconductor circuit units. The Gray Wolf Optimization algorithm is utilized to optimize the IMN. Compared with the reference MMIC LNA, the hybrid MMIC LNA exhibits an average noise reduction of approximately 5.2 K at 77 K and 1.9 K at 15 K during testing. These results make it a promising candidate for applications in superconductor receivers.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"35 2\",\"pages\":\"1-7\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10787449/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10787449/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种低温4 - 8 ghz混合单片微波集成电路(MMIC)低噪声放大器(LNA),该放大器采用外部高温超导体(HTS)阻抗匹配网络(IMN)增强。它从参考InP MMIC LNA演变而来,用外部HTS IMN取代片上IMN,促进与超导电路单元的无缝集成。采用灰狼优化算法对IMN进行优化。与参考MMIC LNA相比,在测试过程中,混合MMIC LNA在77 K时的平均降噪约为5.2 K,在15 K时平均降噪约为1.9 K。这些结果使其成为超导体接收器中有希望应用的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cryogenic C-Band Hybrid MMIC Low-Noise Amplifier Using HTS Input Matching Network Assisted by Gray Wolf Optimizer
In this article, a cryogenic 4–8-GHz hybrid monolithic microwave integrated circuit (MMIC) low-noise amplifier (LNA), enhanced with an external high-temperature superconductor (HTS) impedance matching network (IMN), is proposed. It evolves from a reference InP MMIC LNA by substituting the on-chip IMN with an external HTS IMN, facilitating seamless integration with superconductor circuit units. The Gray Wolf Optimization algorithm is utilized to optimize the IMN. Compared with the reference MMIC LNA, the hybrid MMIC LNA exhibits an average noise reduction of approximately 5.2 K at 77 K and 1.9 K at 15 K during testing. These results make it a promising candidate for applications in superconductor receivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
期刊最新文献
Design Study of Fully Superconducting Motor With MgB$_{2}$ Wire and YBCO Bulk Combination for Brushless Operation Table of Contents Front Cover TechRxiv: Share Your Preprint Research with the World! IEEE Transactions on Applied Superconductivity Subject Categories for Article Numbering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1