现代电力系统稳定性分析的人工智能技术

iEnergy Pub Date : 2024-12-30 DOI:10.23919/IEN.2024.0027
Jiashu Fang;Chongru Liu
{"title":"现代电力系统稳定性分析的人工智能技术","authors":"Jiashu Fang;Chongru Liu","doi":"10.23919/IEN.2024.0027","DOIUrl":null,"url":null,"abstract":"Effective stability analysis is essential for the secure operation of modern power systems. As smart grids evolve with increased interconnection, renewable energy integration, and electrification, the large-scale deployment of ultra-high voltage AC/DC networks introduces various operational modes and potential fault points, posing significant challenges to maintaining stability. Traditional analysis and control methods fall short under these conditions. In contrast, emerging artificial intelligence (AI) techniques, combined with real-time data collection, provide powerful tools for enhancing stability analysis in smart grids. This paper comprehensively explores AI techniques in stability analysis, discussing the necessity and rationale for integrating AI into stability analysis through the lenses of knowledge fusion, discovery, and adaptation. It provides a thorough review of current studies on AI applications in stability analysis, addresses key challenges, and outlines future prospects for AI integration, highlighting its potential to improve analytical capabilities in complex power systems.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 4","pages":"194-215"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818563","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems\",\"authors\":\"Jiashu Fang;Chongru Liu\",\"doi\":\"10.23919/IEN.2024.0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective stability analysis is essential for the secure operation of modern power systems. As smart grids evolve with increased interconnection, renewable energy integration, and electrification, the large-scale deployment of ultra-high voltage AC/DC networks introduces various operational modes and potential fault points, posing significant challenges to maintaining stability. Traditional analysis and control methods fall short under these conditions. In contrast, emerging artificial intelligence (AI) techniques, combined with real-time data collection, provide powerful tools for enhancing stability analysis in smart grids. This paper comprehensively explores AI techniques in stability analysis, discussing the necessity and rationale for integrating AI into stability analysis through the lenses of knowledge fusion, discovery, and adaptation. It provides a thorough review of current studies on AI applications in stability analysis, addresses key challenges, and outlines future prospects for AI integration, highlighting its potential to improve analytical capabilities in complex power systems.\",\"PeriodicalId\":100648,\"journal\":{\"name\":\"iEnergy\",\"volume\":\"3 4\",\"pages\":\"194-215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818563\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10818563/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818563/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效的稳定性分析对现代电力系统的安全运行至关重要。随着智能电网互联、可再生能源整合和电气化程度的提高,超高压交流/直流网络的大规模部署引入了各种运行模式和潜在故障点,给电网的稳定性带来了重大挑战。传统的分析和控制方法无法满足这些条件。相比之下,新兴的人工智能(AI)技术与实时数据收集相结合,为增强智能电网的稳定性分析提供了强大的工具。本文全面探讨了人工智能技术在稳定性分析中的应用,从知识融合、发现和适应的角度探讨了将人工智能纳入稳定性分析的必要性和基本原理。它全面回顾了目前人工智能在稳定性分析中的应用研究,解决了关键挑战,概述了人工智能集成的未来前景,强调了其提高复杂电力系统分析能力的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems
Effective stability analysis is essential for the secure operation of modern power systems. As smart grids evolve with increased interconnection, renewable energy integration, and electrification, the large-scale deployment of ultra-high voltage AC/DC networks introduces various operational modes and potential fault points, posing significant challenges to maintaining stability. Traditional analysis and control methods fall short under these conditions. In contrast, emerging artificial intelligence (AI) techniques, combined with real-time data collection, provide powerful tools for enhancing stability analysis in smart grids. This paper comprehensively explores AI techniques in stability analysis, discussing the necessity and rationale for integrating AI into stability analysis through the lenses of knowledge fusion, discovery, and adaptation. It provides a thorough review of current studies on AI applications in stability analysis, addresses key challenges, and outlines future prospects for AI integration, highlighting its potential to improve analytical capabilities in complex power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contents Front Cover Methods of Suppressing Ion Migration in n-i-p Perovskite Solar Cells Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems Intelligent Adjustment for Power System Operation Mode Based on Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1