{"title":"现代电力系统稳定性分析的人工智能技术","authors":"Jiashu Fang;Chongru Liu","doi":"10.23919/IEN.2024.0027","DOIUrl":null,"url":null,"abstract":"Effective stability analysis is essential for the secure operation of modern power systems. As smart grids evolve with increased interconnection, renewable energy integration, and electrification, the large-scale deployment of ultra-high voltage AC/DC networks introduces various operational modes and potential fault points, posing significant challenges to maintaining stability. Traditional analysis and control methods fall short under these conditions. In contrast, emerging artificial intelligence (AI) techniques, combined with real-time data collection, provide powerful tools for enhancing stability analysis in smart grids. This paper comprehensively explores AI techniques in stability analysis, discussing the necessity and rationale for integrating AI into stability analysis through the lenses of knowledge fusion, discovery, and adaptation. It provides a thorough review of current studies on AI applications in stability analysis, addresses key challenges, and outlines future prospects for AI integration, highlighting its potential to improve analytical capabilities in complex power systems.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 4","pages":"194-215"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818563","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems\",\"authors\":\"Jiashu Fang;Chongru Liu\",\"doi\":\"10.23919/IEN.2024.0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective stability analysis is essential for the secure operation of modern power systems. As smart grids evolve with increased interconnection, renewable energy integration, and electrification, the large-scale deployment of ultra-high voltage AC/DC networks introduces various operational modes and potential fault points, posing significant challenges to maintaining stability. Traditional analysis and control methods fall short under these conditions. In contrast, emerging artificial intelligence (AI) techniques, combined with real-time data collection, provide powerful tools for enhancing stability analysis in smart grids. This paper comprehensively explores AI techniques in stability analysis, discussing the necessity and rationale for integrating AI into stability analysis through the lenses of knowledge fusion, discovery, and adaptation. It provides a thorough review of current studies on AI applications in stability analysis, addresses key challenges, and outlines future prospects for AI integration, highlighting its potential to improve analytical capabilities in complex power systems.\",\"PeriodicalId\":100648,\"journal\":{\"name\":\"iEnergy\",\"volume\":\"3 4\",\"pages\":\"194-215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818563\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10818563/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818563/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems
Effective stability analysis is essential for the secure operation of modern power systems. As smart grids evolve with increased interconnection, renewable energy integration, and electrification, the large-scale deployment of ultra-high voltage AC/DC networks introduces various operational modes and potential fault points, posing significant challenges to maintaining stability. Traditional analysis and control methods fall short under these conditions. In contrast, emerging artificial intelligence (AI) techniques, combined with real-time data collection, provide powerful tools for enhancing stability analysis in smart grids. This paper comprehensively explores AI techniques in stability analysis, discussing the necessity and rationale for integrating AI into stability analysis through the lenses of knowledge fusion, discovery, and adaptation. It provides a thorough review of current studies on AI applications in stability analysis, addresses key challenges, and outlines future prospects for AI integration, highlighting its potential to improve analytical capabilities in complex power systems.