{"title":"w波段1kw脉冲行波管的四端口折叠波导慢波结构","authors":"Xiaoqing Zhang;Jun Cai;Xuankai Zhang;Yinghua Du;Chang Gao;Hanshuo Mu;Jinjun Feng","doi":"10.1109/LED.2024.3505606","DOIUrl":null,"url":null,"abstract":"This letter presents the development of a W-band, 1-kW pulsed traveling wave tube (TWT) featuring a pencil beam focused by a periodic permanent magnet (PPM) system with the four-port structure, designed to reduce the inner diameter of the magnetic field system. By employing the four-port slow-wave structure, the inner radius of the PPM system was reduced by approximately 25%, leading to an increase in the axial magnetic field amplitude from 0.6T to 0.8T. This enhancement allows for a substantial increase in the beam current at the same operating voltage. The assembled W-band, 1-kW TWT was tested at a beam current of 410mA and a beam voltage of 21.65kV. Testing demonstrated that the TWT achieved over 1kW of output power with a 1.3GHz bandwidth, with a peak output power of 1,130W.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"100-102"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-Port Folded Waveguide Slow Wave Structure for W-Band 1-kW Pulsed Traveling Wave Tube\",\"authors\":\"Xiaoqing Zhang;Jun Cai;Xuankai Zhang;Yinghua Du;Chang Gao;Hanshuo Mu;Jinjun Feng\",\"doi\":\"10.1109/LED.2024.3505606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents the development of a W-band, 1-kW pulsed traveling wave tube (TWT) featuring a pencil beam focused by a periodic permanent magnet (PPM) system with the four-port structure, designed to reduce the inner diameter of the magnetic field system. By employing the four-port slow-wave structure, the inner radius of the PPM system was reduced by approximately 25%, leading to an increase in the axial magnetic field amplitude from 0.6T to 0.8T. This enhancement allows for a substantial increase in the beam current at the same operating voltage. The assembled W-band, 1-kW TWT was tested at a beam current of 410mA and a beam voltage of 21.65kV. Testing demonstrated that the TWT achieved over 1kW of output power with a 1.3GHz bandwidth, with a peak output power of 1,130W.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 1\",\"pages\":\"100-102\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10766605/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10766605/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
This letter presents the development of a W-band, 1-kW pulsed traveling wave tube (TWT) featuring a pencil beam focused by a periodic permanent magnet (PPM) system with the four-port structure, designed to reduce the inner diameter of the magnetic field system. By employing the four-port slow-wave structure, the inner radius of the PPM system was reduced by approximately 25%, leading to an increase in the axial magnetic field amplitude from 0.6T to 0.8T. This enhancement allows for a substantial increase in the beam current at the same operating voltage. The assembled W-band, 1-kW TWT was tested at a beam current of 410mA and a beam voltage of 21.65kV. Testing demonstrated that the TWT achieved over 1kW of output power with a 1.3GHz bandwidth, with a peak output power of 1,130W.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.